PQTLS-AD: Post-Quantum TLS
Accelerated with DNS

Sangwon Lim
Seoul National University
Seoul, Republic of Korea

sangwonlim @snu.ac.kr

Hyeonmin Lee
University of Virginia

frvovh@virginia.edu

Abstract—Transport Layer Security (TLS) is expected to
transition to Post-Quantum Cryptography (PQC) to mitigate
the threats posed by quantum computing. While PQC ensures
long-term security, it significantly increases the TLS handshake
latency due to the larger key and signature sizes. Various
solutions have been proposed to address this issue; however,
they suffer from limitations, such as the necessity of pre-fetching
certificates or dependency on prior connections. In this paper, we
propose PQTLS-AD, a novel method that leverages the Domain
Name System (DNS) to efficiently distribute PQC certificates. By
offloading certificate transmission to DNS, PQTLS-AD reduces
handshake data overhead, effectively lowering handshake latency.
We have developed a PQTLS-AD prototype and conducted exten-
sive experiments. Our results show that PQTLS-AD significantly
reduces handshake latency, cutting it by more than one Round-
Trip Time (RTT) compared to standard PQTLS.

Index Terms—Transport Layer Security, TLS, Post-Quantum
Cryptography, Post-Quantum TLS, Performance, Latency

I. INTRODUCTION

With growing concerns about security and privacy in online
communications, Transport Layer Security (TLS) has become
the de facto standard to set up a secure connection between
a client and a server [§8]. Meanwhile, advances in quantum
computing pose a significant threat to current Public Key
Cryptography (PKC) standards such as DH, ECDH, RSA,
ECDSA, and EdDSA, which have been used by TLS [4].
To counteract this threat, NIST has embarked on the stan-
dardization of quantum-secure cryptographic alternatives for
key exchange and digital signatures. In August 2024, NIST
released FIPS 203 (Module-Lattice-Based Key-Encapsulation
Mechanism) [15] based on CRYSTALS-KYBER, FIPS 204
(Module-Lattice-Based Digital Signature Standard) [14] based
on CRYSTALS-DILITHIUM, and FIPS 205 (Stateless Hash-
Based Digital Signature Standard) [[16] based on SPHINCS+.

Many researchers have examined the Post-Quantum Cryp-
tography (PQC) standards to find potential issues, such as
computational requirements and data size, when introducing
the proposed PQC in TLS. Henceforth, the TLS protocol
with the PQC algorithms is referred to as PQTLS (like
[24]). In terms of computational overhead, [2]] revealed that
while processing delays of PQTLS increased slightly when
operating as a TLS server on low-end embedded devices but
performs well as a client. On modern desktop computers, no
noticeable delays were observed when operating as a server or

Charlottesville, VA, United States

Gyeongheon Jeong Ted “Taekyoung” Kwon
Seoul National University — Seoul National University
Seoul, Republic of Korea Seoul, Republic of Korea

tiop7 @snu.ac.kr tkkwon @snu.ac.kr

a client [31]], [33]]. However, since PQC algorithms use much
longer keys than traditional PKC ones, the size of the data
transmitted during a PQTLS handshake increases substantially,
which motivates this work.

Multiple studies indicate that when a PQTLS handshake
is performed following a TCP handshake, multiple Round-
Trip Times (RTTs) are required to transmit the increased
data, due to the constraints imposed by the initial value of
the TCP Congestion Window (CW) [2], [26], [29]. Network
delays, which can span multiple RTTs, can reach hundreds of
milliseconds depending on the geographical distances between
clients and servers [8], [13]. In any case, long delays can
significantly impact delay-sensitive users [1]], [10], [28]], [34].

Many studies [2], [12], [191-121], [27], [27]I, [31]-[33] have
investigated the issue of increased setup delays caused by
the additional data overhead in PQTLS handshakes, mainly
due to the volume of the PQC certificate chain. To address
this problem, several methods have been proposed, such as
caching PQC certificates or prefetching them via alternative
channels [6], [7], [22], [25]. However, these approaches have
limitations, such as not being applicable during the initial
connection or requiring additional channels.

This paper introduces Post-Quantum TLS Accelerated with
DNS (PQTLS-AD), a method leveraging the Domain Name
System (DNS) to overcome existing limitations. PQTLS-AD
enables clients to establish a PQTLS session in a single RTT,
even for first-time connections, without requiring additional
channels. In contrast, PQTLS typically requires at least two
RTTs to transfer the large PQC certificate sizes.

II. BACKGROUND AND RELATED WORK

Domain Name System (DNS). DNS is a globally distributed
database that maps domain names to their associated informa-
tion using DNS records; for instance, an A record contains the
IPv4 address of a domain name. These records are provided
by authoritative name servers and are distributed through DNS
resolvers, which are typically located close to clients. Further-
more, since DNS can be used to deliver various information of
the server to the client before sending any packets to the server,
there have been attempts to leverage it for multiple purposes;
TLS Encrypted Client Hello [23]] enhances privacy, ZTLS [9]]
reduces initial connection delay, and DANE [5]] augments PKI
by publishing certificates via DNS. Accordingly, new DNS

PQTLS
Client

PQTLS
Server

o PQTLS ClientHello =

+supported_group (PQC KEM list)
+signature_algorithms (PQC Signature Scheme list)
+signature_algorithms_cert (PQC Signature Scheme list)
+key_share (Ephemeral PQC Public Key)

- PQTLS ServerHello -
+key_share (PQC Ciphertext)

{EncryptedExtensions}

{Certificate} (PQC Certificate Chain)

{CerificateVerify} (PQC Signature over handshake)

{Finished}

{Finished}

% @ >

Establish Secure Session

{ } Encrypted message + Noteworthy extensions in PQTLS

Fig. 1: A Post-Quantum TLS Handshake is illustrated.

record types have been proposed, such as the TLSA record [5]],
which stores the server’s certificate or public key.

Post-Quantum TLS (PQTLS). Integrating the PQC
schemes into TLS affects several stages of the handshake
procedure [26]. illustrates the changes in detail.
On the client side, the ‘supported_group’, which indicates the
group for the key exchange supported by the client, is changed
from the existing ECDHE or DHE to a PQC Scheme such
as FIPS 203. Similarly, the ‘signature_algorithms’ and ‘signa-
ture_algorithms_cert’” supported by the client are also changed
to PQC Schemes. Lastly, a ‘key_share’ (i.e., an ephemeral
PQC public key) of a chosen PQC scheme, (e.g., FIPS 203),
is transmitted. On the server side, a PQC ciphertext generated
with the PQC public key is transmitted as a ‘key_share’. The
Certificate message contains a certificate chain consisting of
certificates that use one of the PQC signature schemes pre-
sented by the client. CertificateVerify is also generated using
one of the post-quantum digital signature schemes presented
by the client. The rest of the protocol remains the same as the
original TLS protocol.

PQTLS and TCP Congenstion control. PQTLS faces
challenges due to the significant increase in the size of
key exchange messages and certificate chains, which, when
combined with TCP congestion control, leads to performance
issues. A common characteristic of PQC algorithms is their
reliance on larger key sizes compared to traditional, pre-
quantum PKC algorithms [21]], [26], [27]. compares
the sizes of keys, ciphertexts, and signatures of pre- and post-
quantum PKC algorithms. [H

Related Work. Various approaches have been proposed to
address the increased handshake time caused by larger data
sizes in PQTLS. Sikeridis et al. [26] suggested increasing the

'Due to space constraints, PQC is shown only for security category 3 [17].

TABLE I: Sizes (in bytes) of keys, ciphertexts, and signatures
of pre- and post-quantum public key algorithms

Key Agreement Algorithm | Public Key | Ciphertext

ECDH NIST P-256 ‘ 32 ‘ 32
DHE 2048 ‘ 256 ‘ 256
ML-KEM-768 ‘ 1184 ‘ 1088

Digital Signature Algorithm | Public Key | Signature
ECDSA NIST P-256 \ 32 | 32
RSA 2048 | 256 | 256
ML-DSA-65 ‘ 1952 ‘ 3309

SLH-DSA-SHA2/SHAKE-192s ‘
SLH-DSA-SHA2/SHAKE-192f |

48‘
48 |

16224
35664

TCP initial CW, but this can raise loss rates in congested
or low-bandwidth networks and impact all TCP applications.
Other studies, such as [24]], propose omitting the validation of
the server signature using KEM, though certificates are still
transmitted, which remain the dominant data component.

(61, 71, [22], [25] explore how to reduce the size of
the certificate chains to be delivered by omitting some of
them. These methods involve (i) leveraging pre-established
certificate dictionaries or sets of intermediate CAs (ICAs),
or (ii) caching ICAs to avoid sending redundant certificates
during the handshake. Despite their potential advantages, these
approaches have limitations: (i) they require some certificates
to be prefetched by browsers through an alternative channel,
and (ii) they cannot be applied to initial connections.

III. PQTLS-AD HANDSHAKE DESIGN

We focus on two goals: reducing PQTLS handshake latency
and ensuring backward compatibility.

Reducing PQTLS handshake latency. To connect to a
PQTLS server, a PQTLS client typically retrieves the server’s
IP address from the DNS and completes a TCP handshake
before initiating the PQTLS handshake. Our design opti-
mizes this procedure by concurrently retrieving the server’s
certificate chain (i.e., PQTLSAD records described in
from the DNS while fetching the A record
(introducing concurrency tactic [3]]). This allows the client
to perform the pre-TLS handshake processes, such as the
A record and the PQC certificate retrieval, within the same
timeframe as before. As a result, it eliminates (or alleviates)
the need to fetch PQC certificates from the server during the
PQTLS handshake, achieving a 1-RTT PQTLS handshake.

Ensuring backward compatibility. A PQTLS-AD client
can figure out a server’s PQTLS-AD support by checking
for the presence of PQTLSAD records (associated with the
server’s domain). If the server does not support PQTLS-AD EL
the client falls back to the standard PQTLS. Similarly, a
PQTLS-AD server can verify a client’s PQTLS-AD support
by examining the POTLSAD extension in ClientHello. This
approach allows PQTLS-AD to coexist with standard PQTLS.

21f the PQTLSAD records are not fetched until the TCP 3-way handshake
is finished, the client concludes that the server does not support PQTLS-AD.

@ ClientHello, key_share, + PQTLSAD

O ®ServerHello, key_share,+ PQTLSAD,
EncryptedExtensions,Certificate*,

(E) CertificateVerify, Finished

PQTLS-AD Client @ Finished PQTLS-AD Server

t |
(3 Fetch PQC Certs @ Upload PQC Certs

@ @ Fetch PQC Certs

i —-]
i —-]
DNS Resolver Authoritative Name Server

+ Hash value of the cached certificates chain
* Only the remaining certs are transmitted, excluding the cached
certs indicated in PQTLS-AD (Skip if all are cached)

Fig. 2: An overview of PQTLS-AD operations is shown.
The PQTLS-AD server omits sending certificates (which have
been delivered via DNS) during its handshake.

A. Operational flows

Based on this design choice, the operations of PQTLS-AD
are illustrated in

@® A PQTLS-AD server uploads some or all of its PQC
certificate chain to its authoritative name server as a
PQTLSAD record.

@ A DNS resolver fetches (and caches) the PQC certificates
(if a client requests the PQTLSAD record) from the
authoritative server.

® A PQTLS-AD client retrieves the PQC certificates from
the DNS resolver, in parallel with obtaining the A record
(i.e., IP addresses).

@ The client generates a hash of the retrieved PQC cer-
tificates, and sends the hash in the PQTLSAD extension
of ClientHello. Note that we propose a new PQTLSAD
extension for ClientHello and ServerHello (see
ftion TIT-B).

® If the received ClientHello contains the PQTLSAD ex-
tension, the server verifies whether the received hash
matches its current certificates. If they match, the server
generates the same POTLSAD extension as it received,
which is included in ServerHello. The Certificate sent by
the server contains only the PQC certificate(s) absent in
the ClientHello’s PQTLSAD extension.

® The client finalizes the handshake by sending a Finished
message to the server if no exceptions occur.

B. PQTLS-AD Details

As shown in PQTLS-AD extends both DNS and
PQTLS. To facilitate this, we introduce new components: the
PQTLSAD record (for DNS) and the POTLSAD extension (for
TLS).

e PQTLSAD record (DNS): In PQTLS-AD, a server’s
PQC certificates are delivered via DNS. To enable this, we
propose a DNS record type, the POTLSAD record, which
stores all or part of a certificate chain (e.g., depending on
the server’s policy).

e PQTLSAD extension (TLS): We define a new TLS
extension for ClientHello and ServerHello, with ‘exten-
sion_type’ set to PQTLSAD (64) and ‘extension_data’
containing the hash of PQC certificates, which follows the
format below; the hash value is computed using SHA—256

{extension_type=PQTLSAD; extension_data=hash of
PQC certificates}

We next describe the behaviors of PQTLS-AD servers and
clients.

PQTLS-AD server.
ations.

(i) Publishing PQTLSAD (DNS): to support PQTLS-AD, a
server is required to publish some or all of its PQC certificates
using a PQTLSAD record. The server operator first decides
whether to upload the entire certificate chain or only its subset,
starting from the root CA certificate. As long as the total
amount of data sent by the server (i.e., ServerHello, Certificate,
and CertificateVerify) remains within the TCP initial CW size
(14,600 bytes)—-for example, when using an ML-DSA-65
certificate derived from DILITHIUM3-—the server operator
can choose to upload only a subset of its certificate chain.
Specifically, the certificates of the root and intermediate CAs
can be published via DNS, while the end-entity certificate
of the server is sent directly during the handshake. In such
cases, the DNS record only needs to be updated when the
root or intermediate CA’s certificates change, which usually
occurs infrequently. However, if the size of the server’s data
including only the end-entity certificate exceeds the above
CW size, uploading the entire chain to DNS is recommended,
which may require relatively frequent updates considering the
server’s certificate reissuance cycle.

(ii) Validating ClientHello (TLS): when the server receives
a handshake request from the client, it determines its operating
mode based on the presence of the POTLSAD extension in
ClientHello. If the extension is included, the server operates
in PQTLS-AD mode; otherwise, it falls back to standard
PQTLS mode. In PQTLS-AD mode, the server verifies the
hash data (referred to as ’extension data’ henceforth) in the
PQOTLSAD extension of the ClientHello message. This is done
by checking whether the hash matches one of the subsets of
the currently used certificate chain.

(iili) Generating ServerHello (TLS): if a match is found,
the server first generates ServerHello, which includes the
POTLSAD extension that matches the one included in Clien-
tHello. Then, the server generates the Certificate message,
including only the certificates not present in the ClientHello’s
POTLSAD extension since the client does not need to receive
duplicates. If no match is found, the server generates the hash
of its entire certificate chain, includes it in the PQTLSAD
extension, sends it with ServerHello, and transmits the entire
certificate chain via Certificate, as in standard TLS. This

A server performs the following oper-

3SHA-256 is used for the same reason as in RFC 7924, as it is already part
of the TLS 1.3 cipher suite.

process explicitly informs the client that the cached certificate
chain is invalid, ensuring the use of the correct certificates.

PQTLS-AD client. A client performs two operations.

(i) Validating PQTLSAD (DNS, TLS): the client first checks
for the presence of a valid PQTLSAD record for the target
domain. If the PQTLSAD record is not obtained by the time
the TCP handshake is completed El or if the published record
contains certificates with a scheme that the client does not
support El the client proceeds with a standard TLS handshake
following the TCP handshake. If a PQTLSAD record exists and
is valid, the client initiates a PQTLS-AD handshake with the
server over the TCP connection. Here, validating a POQTLSAD
record involves verifying the certificate chain it contains.
This process includes checking the signature, expiration dates,
name chaining, path length constraints, and name constraints
of all certificates. Following this step, any additional validation
is left to the client implementer. E]

(ii) Sending ClientHello (TLS): during the handshake, the
client generates the hash of the certificate chain retrieved from
the PQTLSAD record, includes it in the PQTLSAD extension,
and sends it to the server via ClientHello.

C. Security Considerations

PQTLS-AD differs from existing PQTLS by transmitting
(a subset or all) PQC certificates via DNS and omitting those
certificates during the handshake, exchanging only their hash
value instead.

DNS cache poisoning. Since PQC certificates can be vali-
dated through the certificate chain (from the root CA to end-
entity), they inherently guarantee authenticity and integrity.
Thus, if an attacker manipulates certificates via DNS poison-
ing, the client can immediately detect it through certificate
chain verification.

TLS handshake message manipulation. In our mecha-
nism, certificates retrieved from DNS are omitted from the
Certificate message sent by the server. As a result, they are
also excluded from the handshake transcript where the TLS
Finished message ensures integrity. However, the client and
server exchange the hash of the omitted certificates. This hash
is included in the handshake transcript, effectively ensuring the
integrity of the omitted certificates. Server authenticity remains
guaranteed through CertificateVerify, as in standard TLS.

Denial of Service (DoS) attack. A potential attack on
PQTLS-AD occurs when a PQTLS-AD server renews its
certiﬁcatesﬂ Typically, when renewing certificates, a server
issues new certificates before the previous ones fully expire.
Attackers can exploit this transition period by poisoning the

4This task runs in a separate thread, typically finishing before the other
thread responsible for obtaining the IP address and establishing a TCP session.

SPopular browsers support digital signature algorithms endorsed by leading
Certificate Authorities (CAs), so PQTLS-AD clients rarely receive certificates
using unsupported schemes.

6As noted in [[11], additional validation considerations—such as performance
trade-offs—are outside the scope of PQTLS-AD.

"We do not consider attacks that render DNS unusable, as existing TLS
clients would also be unable to receive A records and establish a connection.

DNS cache with deprecated but still unexpired certificates,
causing a mismatch between the PQTLSAD records retrieved
by the client and the currently used certificates of the server.
This mismatch could render the server inaccessible. However,
in such cases, the client can seamlessly fall back to standard
TLS by using the certificates provided in the Certificate
message (see [subsection III-B)), ensuring no performance
degradation compared to standard TLS.

IV. EVALUATION

A. Prototype Implementation and Experimental Setup

PQTLS-AD client and server. We implemented the
PQTLS-AD client and server using, which is extended with
Open Quantum Safe for OpenSSL [18], [30]. Both the client
and server run on Ubuntuf] The client is located in the AWS
Ohio region, while the server is located in Seoul, South Korea,
with an average RTT of 247 ms between them. For fast and
reliable DNS queries, the client is configured with EDNSO and
keeps the TCP connection open with the DNS resolver.

Authoritative name server and DNS resolver. We deploy
an authoritative name server using BINDO9 to serve DNS
records for our test domain. The name server is co-located
with the PQTLS-AD server. As the PQTLSAD record is a
proposed one and is not officially supported, we slightly abuse
the TLSA record [5] to store PQC certificates for experimental
purposes. For DNS resolution, we utilize a local DNS resolver
provided by Amazon, also located in the AWS Ohio region,
with a query latency of about 1 ms for A record lookups.

B. TLS and DNS Latency Analysis

For experimental purposes, we generate two PQC cer-
tificate chains, each of length 2, employing CRYSTALS-
DILITHIUM3 and SPHINCS+, respectively. Each certificate
chain comprises a self-signed root certificate and an end-entity
certificate, the latter being signed by the corresponding root
certificate. The root certificates are uploaded as PQTLSAD
records to our authoritative name server. Consequently, only
the end-entity certificates are delivered by the server during the
TLS handshake. We utilize CRYSTALS-KYBER768, a PQC
scheme, as the key agreement algorithm in all scenarios. For
comparative purposes, we additionally conduct experiments
with a certificate chain of length two using SHA256ECDSA.
In this setup, we measure the TLS handshake latency and DNS
query latency of PQTLS and PQTLS-AD, and calculate the
median values over 1,000 runs.

TLS handshake latency. As shown in our
experimental results demonstrate that PQTLS-AD effectively

reduces handshake latency compared to PQTLS with the
same certificate chain. Specifically, with DILITHIUM3 cer-
tificates, PQTLS-AD achieves a 1-RTT handshake, reducing
I-RTT compared to PQTLS. With SPHINCS+ certificates,
PQTLS-AD reduces nearly 2-RTTs compared to PQTLS.

8The client operates on Ubuntu 20.04.3 LTS hosted on an AWS EC2
t2.micro instance (Intel® Xeon® CPU E5-2686 v4 @ 2.30GHz with 1 GB
RAM). The server runs on Ubuntu 20.04.6 LTS installed on a desktop with
an Intel® Core™ i5-7500 CPU @ 3.40GHz and 8 GB RAM.

TABLE II: Sizes of the server’s TLS handshake messages.

©
)
-
‘:)Z'Q m DSA Protocol TLS handshake message size (bytes)
« §“ 5 Il PQTLS-AD ServerHello Certificate CertVerify | Total
495.4 — .
g | es54] | SHA256ECDSA | PQTLS | 1,174 | 1,120 | 75| 2369 |
S 251.2
N | PQTLS | 1174 | 10934 | 3297 | 15405 |
°(g;"é\”; 5505 ‘ DILITHIUMS 50 Trs-AD | 186 | 5433 | 3297 | 9916 |
SN :
K | PQTLS | 1,174 | 71829 | 35668 | 108,671 |
& SPHINCS+192 | pOTLS-AD | 1186 | 35880 | 35668 | 72,734 |
0 247 494 741 988 1235(ms)

(a) We plot the handshake latencies of PQTLS and PQTLS-AD.
The x-axis grid lines are spaced in 1-RTT (247 ms) intervals to
highlight how many RTTs are taken for a handshake between
the PQTLS/PQTLS-AD client and server.

)
$° 0.30 EEE PQTLS-AD (Stub resolver)
$ 3.98 PQTLS-AD (Local resolver)
Q\ *
PR
O |0.32 LRTT
S
& 3.09
[2)
0 247(ms)

(b) PQTLSAD record query times are plotted depending on DNS
resolver types, with a dashed vertical line marking the 1-RTT
threshold.

Fig. 3: TLS and DNS latency comparison.

DNS query latency. Next, we examine the DNS latencies
for fetching PQTLS-AD records from the client side. We
consider two resolver types that can be used by the client:
a stub resolver (within the OS) and a local DNS resolver. In
our experiments, POTLSAD records are assumed to be cached
in both resolvers, and we measure the time it takes for the
client to fetch these cached records. As shown in
the stub resolver has a query latency of around 0.3 ms for
both DILITHIUM3 and SPHINCS+ certificates. Even when
the client retrieves DNS records from the local resolver, the
query delay remains below 4 ms, which is minimal compared
to the TCP handshake time—similar to the 1-RTT (i.e., the
dashed vertical line in [Figure 3b). Since the DNS queries run
concurrently with the TCP handshake, they do not affect the
overall time. Therefore, the impact of resolver types on the
PQTLS-AD handshake delay is negligible.

C. Transmitted Data Size and Handshake Latency

To understand how our design achieves this reduction, we
examine the size of the transmitted data during the handshake.

First, in the experiments, the size of ClientHello is 1,462
bytes for PQTLS and 1,474 bytes for PQTLS-AD that
includes the POTLSAD extension. Since both sizes are be-
low the TCP initial CW size of 14,600 bytes, they can be
transmitted within 1-RTT. Therefore, we focus on the TLS
handshake messages sent by the server. shows the
sizes of the server’s three handshake messages (ServerHello,
Certificate, and CertificateVerify), along with their total. For
SHA256ECDSA, the total size of 2,369 bytes allows the
handshake to complete within 1-RTT since it does not exceed
14,600 bytes. Next, in the case of DILITHIUM3 with PQTLS,

the total size is 15,405 bytes, with Certificate (of the server)
accounting for 10,934 bytes. Since this exceeds 14,600 bytes,
the handshake requires at least two RTTs. In contrast, using
DILITHIUM3 with PQTLS-AD allows the server to omit the
root CA certificate from Certificate, reducing its size to 5,433
bytes. This lowers the total data size to 9,916 bytes, enabling a
1-RTT handshake, which aligns with the 1-RTT gap between
PQTLS and PQTLS-AD for DILITHIUMS3 in
For SPHINCS+ with PQTLS, the total data size is 108,671
bytes. According to TCP slow start, the server can initially
send up to 14,600 bytes (initial CW). After receiving ACKs
(after one RTT), the CW doubles to 29,200 bytes. Following
another RTT, the CW increases to 58,400 bytes. Note that,
at this point, 102,200 bytes can be transmitted. Thus, even
with the assumption of no packet losses, at least 4 RTTs
are required to complete the transmission of the server’s
handshake messages. With PQTLS-AD, the total size is
reduced to 72,734 bytes by omitting the CA certificate (35,949
bytes) from Certificate. This allows the server to finish trans-
mitting its handshake data over three RTTs, which explains

the performance gap in the case of SPHINCS+ in

D. Summary

Our experimental results indicate that the data sent by the
server in PQTLS may exceed the TCP initial CW, leading to an
increased handshake delay. This delay may extend across mul-
tiple RTTs due to TCP slow start, depending on the data size.
However, with PQTLS-AD, certificates can be disseminated
via DNS, notably reducing the data to be transmitted during
the TLS handshake. Additionally, the latency introduced by
delivering certificates through DNS is negligible compared to
the handshake latency. In this way, PQTLS-AD effectively
reduces the overall handshake time by more than one RTT
compared to PQTLS.

V. CONCLUSION

Post-quantum cryptography (PQC) has significantly larger
public key and signature sizes compared to traditional public
key cryptography (PKC). When the TLS protocol adopts
PQC, its handshake latency may be substantially increased,
potentially degrading the user experience for delay-sensitive
applications. To mitigate this issue, we proposed PQTLS-AD,
which reduces the handshake latency by disseminating the
server’s PQC certificate chain via DNS. Our prototype-based
experiments demonstrate that PQTLS-AD effectively de-
creases the TLS handshake delay by reducing the amount
of the certificate chain that must be transmitted during the

handshake. Moreover, PQTLS-AD is designed in a backward-
compatible fashion, enabling seamless integration with exist-
ing TLS servers.

ACKNOWLEDGMENT

This work was supported by the National Research Foun-
dation of Korea (NRF) grant funded by the Korea government
(MSIT) (No. RS-2023-00220985). This work was supported
by Institute of Information & communications Technology
Planning & Evaluation (IITP) grant funded by the Korea
government (MSIT) [NO.RS-2021-11211343, Artificial Intelli-
gence Graduate School Program (Seoul National University)].

[1]

[2]

[3]

[4]
[5]

[6]

[7]

[8]

[9]

(10]

[11]

(12]

[13]

[14]

[15]

REFERENCES

I. N. Bozkurt, A. Aguirre, B. Chandrasekaran, P. B. Godfrey, G. Laugh-
lin, B. Maggs, and A. Singla. Why is the internet so slow?! In M. A.
Kaafar, S. Uhlig, and J. Amann, editors, Passive and Active Measurement
(PAM), pages 173-187, Cham, 2017. Springer International Publishing.
K. Biirstinghaus-Steinbach, C. Krauf3, R. Niederhagen, and M. Schnei-
der. Post-quantum tls on embedded systems: Integrating and evaluating
kyber and sphincs+ with mbed tls. In Proceedings of the 15th ACM Asia
Conference on Computer and Communications Security, ASIA CCS 20,
page 841-852, New York, NY, USA, 2020. Association for Computing
Machinery.

D. Garlan, F. Bachmann, J. Ivers, J. Stafford, L. Bass, P. Clements, and
P. Merson. Documenting Software Architectures: Views and Beyond.
Addison-Wesley Professional, 2nd edition, 2010.

R. A. Grimes. How Can Quantum Computing Break Today’s Cryptog-
raphy?, pages 59-83. Wiley Data and Cybersecurity, 2020.

P. E. Hoffman and J. Schlyter. The DNS-Based Authentication of Named
Entities (DANE) Transport Layer Security (TLS) Protocol: TLSA. RFC
6698, Aug. 2012.

P. Kampanakis, C. Bytheway, B. Westerbaan, and M. Thomson. Sup-
pressing CA Certificates in TLS 1.3. Internet-Draft draft-kampanakis-
tls-scas-latest-03, Internet Engineering Task Force, Jan. 2023. Work in
Progress.

P. Kampanakis and M. Kallitsis. Faster post-quantum tls handshakes
without intermediate ca certificates. In S. Dolev, J. Katz, and A. Meisels,
editors, Cyber Security, Cryptology, and Machine Learning, pages 337—
355, Cham, 2022. Springer International Publishing.

H. Lee, D. Kim, and Y. Kwon. Tls 1.3 in practice:how tls 1.3 contributes
to the internet. In Proceedings of the Web Conference 2021, WWW ’21,
page 70-79, New York, NY, USA, 2021. Association for Computing
Machinery.

S. Lim, H. Lee, H. Kim, H. Lee, and T. Kwon. Ztls: A dns-based
approach to zero round trip delay in tls handshake. In Proceedings
of the ACM Web Conference 2023, WWW °23, page 2360-2370, New
York, NY, USA, 2023. Association for Computing Machinery.

S. Lohr. For Impatient Web Users, an Eye Blink Is Just
Too Long to Wait. https://www.nytimes.com/2012/03/01/technology/
impatient- web-users- flee-slow-loading-sites.html, 2012. Retrieved:
2024-01-04.

M. Luo, B. Feng, L. Lu, E. Kirda, and K. Ren. On the complexity
of the web’s pki: Evaluating certificate validation of mobile browsers.
IEEE Transactions on Dependable and Secure Computing, 21(1):419—
433, 2024.

D. Marchsreiter and J. Sepuilveda. Hybrid post-quantum enhanced tls 1.3
on embedded devices. In 2022 25th Euromicro Conference on Digital
System Design (DSD), pages 905-912, 2022.

D. Naylor, A. Finamore, I. Leontiadis, Y. Grunenberger, M. Mellia,
M. Munafo, K. Papagiannaki, and P. Steenkiste. The cost of the ”s”
in https. In Proceedings of the 10th ACM International on Conference
on Emerging Networking Experiments and Technologies, CONEXT ’14,
page 133-140, New York, NY, USA, 2014. Association for Computing
Machinery.

NIST. Module-lattice-based digital signature standard. https://doi.org/
10.6028/NIST.FIPS.204, Aug. 2024. Retrieved: 2025-01-03.

NIST. Module-lattice-based key-encapsulation mechanism standard.
https://doi.org/10.6028/NIST.FIPS.203, Aug. 2024. Retrieved: 2025-01-
03.

[16]

(17]

[18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

(31]

(32]

(33]

[34]

NIST. Stateless hash-based digital signature standard. https://doi.org/
10.6028/NIST.FIPS.205, Aug. 2024. Retrieved: 2025-01-03.

NIST. Post-Quantum Cryptography Security (Evaluation
Criteria). https://csrc.nist.gov/projects/post-quantum-cryptography/
post-quantum-cryptography-standardization/evaluation- criteria/

security- (evaluation-criteria), 2025. Retrieved: 2025-01-11.

Open Quantum Safe provider Project Authors. Open quantum
safe provider for openssl https://github.com/open-quantum-safe/
oqs-provider, 2024. Retrieved: 2025-01-22.

C. Paquin, D. Stebila, and G. Tamvada. Benchmarking post-quantum
cryptography in tls. In J. Ding and J.-P. Tillich, editors, Post-Quantum
Cryptography, pages 72-91, Cham, 2020. Springer International Pub-
lishing.

S. Paul, Y. Kuzovkova, N. Lahr, and R. Niederhagen. Mixed certificate
chains for the transition to post-quantum authentication in tls 1.3. In
Proceedings of the 2022 ACM on Asia Conference on Computer and
Communications Security, ASIA CCS °22, page 727-740, New York,
NY, USA, 2022. Association for Computing Machinery.

M. Raavi, S. Wuthier, P. Chandramouli, Y. Balytskyi, X. Zhou, and S.-Y.
Chang. Security comparisons and performance analyses of post-quantum
signature algorithms. In Applied Cryptography and Network Security:
19th International Conference, ACNS 2021, Kamakura, Japan, June
21-24, 2021, Proceedings, Part II, page 424-447, Berlin, Heidelberg,
2021. Springer-Verlag.

E. Rescorla, R. Barnes, H. Tschofenig, and B. M. Schwartz. Compact
TLS 1.3. Internet-Draft draft-ietf-tls-ctls-10, Internet Engineering Task
Force, Apr. 2024. Work in Progress.

E. Rescorla, K. Oku, N. Sullivan, and C. A. Wood. TLS Encrypted
Client Hello. Internet-Draft draft-ietf-tls-esni-24, Internet Engineering
Task Force, Mar. 2025. Work in Progress.

P. Schwabe, D. Stebila, and T. Wiggers. Post-quantum tls without
handshake signatures. In Proceedings of the 2020 ACM SIGSAC
Conference on Computer and Communications Security, CCS 20, page
1461-1480, New York, NY, USA, 2020. Association for Computing
Machinery.

D. Sikeridis, S. Huntley, D. Ott, and M. Devetsikiotis. Intermediate
certificate suppression in post-quantum tls: an approximate membership
querying approach. In Proceedings of the 18th International Conference
on Emerging Networking EXperiments and Technologies, CONEXT 22,
page 35-42, New York, NY, USA, 2022. Association for Computing
Machinery.

D. Sikeridis, P. Kampanakis, and M. Devetsikiotis. Assessing the over-
head of post-quantum cryptography in tls 1.3 and ssh. In Proceedings of
the 16th International Conference on Emerging Networking EXperiments
and Technologies, CONEXT °20, page 149-156, New York, NY, USA,
2020. Association for Computing Machinery.

D. Sikeridis, P. Kampanakis, and M. Devetsikiotis. Post-quantum
authentication in TLS 1.3: A performance study. In 27th Annual Network
and Distributed System Security Symposium, NDSS 2020, San Diego,
California, USA, February 23-26, 2020. The Internet Society, 2020.

A. Singla, B. Chandrasekaran, P. B. Godfrey, and B. Maggs. The internet
at the speed of light. In Proceedings of the 13th ACM Workshop on Hot
Topics in Networks, HotNets-XIII, page 1-7, New York, NY, USA, 2014.
Association for Computing Machinery.

M. Sosnowski, F. Wiedner, E. Hauser, L. Steger, D. Schoinianakis,
S. Gallenmiiller, and G. Carle. The performance of post-quantum tls
1.3. In Companion of the 19th International Conference on Emerging
Networking EXperiments and Technologies, CONEXT 2023, page 19-27,
New York, NY, USA, 2023. Association for Computing Machinery.
The OpenSSL Project Authors. Openssl project. |https://github.com/
openssl/openssl, 2024. Retrieved: 2025-01-22.

I. Tzinos, K. Limniotis, and N. Kolokotronis. Evaluating the perfor-
mance of post-quantum secure algorithms in the tls protocol. Journal
of Surveillance, Security and Safety, 3(3), 2022.

B. Westerbaan. Sizing Up Post-Quantum Signatures.
cloudflare.com/sizing-up-post-quantum-signatures/, 2021.
2024-01-12.

B. Westerbaan and C. D. Rubin. Defending against future
threats: Cloudflare goes post-quantum. https://blog.cloudflare.com/
post-quantum-for-all/, Oct. 2022. Retrieved: 2025-02-12.

N. Zilberman, M. Grosvenor, D. A. Popescu, N. Manihatty-Bojan,
G. Antichi, M. Wéjcik, and A. W. Moore. Where has my time gone? In
International Conference on Passive and Active network measurement
(PAM), pages 201-214. Springer, 2017.

https://blog.
Retrieved:

https://www.nytimes.com/2012/03/01/technology/impatient-web-users-flee-slow-loading-sites.html
https://www.nytimes.com/2012/03/01/technology/impatient-web-users-flee-slow-loading-sites.html
https://doi.org/10.6028/NIST.FIPS.204
https://doi.org/10.6028/NIST.FIPS.204
https://doi.org/10.6028/NIST.FIPS.203
https://doi.org/10.6028/NIST.FIPS.205
https://doi.org/10.6028/NIST.FIPS.205
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/evaluation-criteria/security-(evaluation-criteria)
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/evaluation-criteria/security-(evaluation-criteria)
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/evaluation-criteria/security-(evaluation-criteria)
https://github.com/open-quantum-safe/oqs-provider
https://github.com/open-quantum-safe/oqs-provider
https://github.com/openssl/openssl
https://github.com/openssl/openssl
https://blog.cloudflare.com/sizing-up-post-quantum-signatures/
https://blog.cloudflare.com/sizing-up-post-quantum-signatures/
https://blog.cloudflare.com/post-quantum-for-all/
https://blog.cloudflare.com/post-quantum-for-all/

	Introduction
	Background and Related Work
	PQTLS-AD Handshake Design
	Operational flows
	PQTLS-AD Details
	Security Considerations

	Evaluation
	Prototype Implementation and Experimental Setup
	TLS and DNS Latency Analysis
	Transmitted Data Size and Handshake Latency
	Summary

	Conclusion
	References

