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Abstract
In online data-processing services, a user typically hands
over personal data to a remote server beyond the user’s con-
trol. In such environments, the user cannot be assured that
the data is protected from potential leaks. We introduce Pave,
a new framework to guarantee data privacy while being pro-
cessed remotely. Pave provides an arbitrary data-processing
program with a sandboxed execution environment. The run-
time monitor, PaveBox, intercepts all data flows into and
out of the sandbox, allowing them only if they do not com-
promise user data. At the same time, it guarantees that the
benign flows will not be hampered to preserve the program’s
functionality. As the PaveBox is built on top of Intel SGX,
a user can verify the integrity and confidentiality of the
PaveBox by remote attestation. We provide a formal model
of Pave and prove its security and carry out the quantitative
analysis with prototype-based experiments.

CCS Concepts: • Security and privacy→ Pseudonymity,
anonymity and untraceability.
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1 Introduction
Online data-processing services such as Pixlr (photo edit-
ing), VEED (video editing), and ezyZip (file compression) are
becoming more prevalent. To use such an online service, a
user typically uploads the user’s personal data, selects how
to process it, and receives the result through a browser.

One of their critical drawbacks is the loss of control over
data. After the data is sent to a remote server, the user can-
not figure out how it is processed, and whether the service
provider stores it for other purposes. Also, a data-processing
server may be vulnerable to attacks for data leakage. For
instance, a server hosting file converter services was hacked
and the attacker obtained control over the server [96]. A se-
ries of reported data breaches [9, 34, 47] show potential risks
of using such services. Also, since an online service provider
typically deploys its service on a cloud, the cloud provider
that has access to user data can also be compromised [29].

Trusted hardware, such as Intel SGX, has emerged as one
of the solutions to protect user data even when processed
in a cloud environment [10, 40, 54, 73]. A data-processing
program is enforced not to leak user data by a controller,
which is in turn protected by Intel SGX. Intel SGX provides
an isolated container, called an enclave, which the OS cannot
access. However, as Intel SGX protects only a user-level appli-
cation (ring 3), using OS-provided services such as standard
I/O, network, and persistent storage cannot be protected, and
hence can be exposed to the service provider. Specifically,
when the program requests a syscall for the OS-provided
services, it exits the enclave via the pre-defined software
interfaces (between the enclave and the OS). Thus, any ma-
licious service provider may try to analyze the user data
by conducting a covert channel attack, intentionally encod-
ing the data into syscall parameters or the timing between
syscall invocations. For instance, the elapsed time between
two syscalls can be decided by the value of private data.
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To the best of our knowledge, Ryoan [40] is the only ap-
proach to thwart this covert channel attack via the software
interfaces. Ryoan targets a request-oriented data-processing
program, which refers to a program that accepts only one
request and generates one response over the network. Specif-
ically, it eliminates this covert channel of the software inter-
faces by blocking all the syscalls after receiving the request,
except for the one response transmission. Furthermore, to
block the timing attack, Ryoan sets a fixed time interval
between receiving the request and sending the response.
In this paper, we present Pave, an information flow con-

trol (IFC) framework with an SGX-based sandbox, capable of
supporting general programs (i.e., not limited to a request-
oriented program) and preserving timing-sensitive privacy.
Similar to Ryoan, Pave provides an SGX-based sandbox,
dubbed a PaveBox, which means that Intel SGX protects the
PaveBox, which controls an untrusted data-processing pro-
gram. Compared to Ryoan, Pave can preserve the function-
ality of a wider range of data-processing programs. While
Ryoan unconditionally forbids syscalls after receiving the
user request, Pave does not pose a constraint on the syscall in-
vocation as long as it does not violate the user privacy. There-
fore, Pave can accommodate general programs such as inter-
active applications that require multiple data exchanges and
long-running applications that continuously invoke syscalls
to keep their states1. Further, Pave does not enforce the exe-
cution time to be constant, as long as it does not leak the user
data. To sum up, Pave enforces every program to protect the
user privacy. At the same time, if a program is already secure
without Pave, then Pave does not restrict its functionality.

To preserve the privacy and the functionality, PaveBox
needs a criterion for determining whether any flow is be-
nign or malicious. For this, we formally model these require-
ments as timing-sensitive non-interference and functionality,
which will be detailed in §3. Regardless of private user data, a
benign program given the same public data should generate a
consistent syscall pattern (e.g., the timing of invocations). By
contrast, malicious programs would show different patterns
of syscall invocations depending on the private data.
Specifically, Pave needs to identify privacy-independent

syscall patterns.We simulate a data-processing programwith
dummy data, which serves on behalf of private data. Then,
the simulation results in a sequence of syscall invocations.
When the program is executed with the real user data, the
PaveBox enforces it to generate the same syscall pattern as
that of the simulation. In addition, since the benign program
always generates a consistent pattern, the generated pattern
by the simulation would match that of the real execution,
which preserves the functionality.

1Although an interactive application program can be rewritten into a
request-oriented program, which takes previous states as a new input,
it is not scalable as the number of states increases.

To formally prove the properties of Pave, we define the
behavior of a data-processing program under our language
model with and without a PaveBox. Then, we prove that for
any program, its behaviors are consistent under the PaveBox,
regardless of sensitive user data. Also, we prove that if the
program is already non-interferent without Pave, the pro-
gram behavior would not be modified by the PaveBox.
Lastly, we implement the prototype of Pave, which is

tested for six use cases, to demonstrate its feasibility and
applicability. We evaluate its computation overheads com-
pared to Linux applications without Pave or Intel SGX.

We outline the contributions of this paper as follows.
• We design an IFC framework Pave to protect user data
against an adversary who is a potentially malicious service
provider. It is the first approach that models the require-
ments as timing-sensitive non-interference and function-
ality preservation.

• We formally model a data-processing program with and
without a PaveBox and define the notion of the privacy
and the functionality under our system settings. In addi-
tion, we formally prove that Pave preserves both.

• We implement a proof-of-concept of PaveBox and evalu-
ate its computation overhead to demonstrate its feasibility.

• For further research, we make our code publicly available
in https://github.com/alsroad/pave.

2 Background and Threat Model
2.1 Intel SGX
Intel SGX is a set of instructions to protect a user-level pro-
cess. It enables an application to build an enclave, a memory
area protected from disclosure or modification by any priv-
ileged software. The enclave memory is encrypted by the
Memory Encryption Engine and decrypted when it is loaded
to CPU. Intel SGX provides remote attestation that allows a
remote entity to verify the integrity of the code and initial
data of an enclave by checking its signed hash.
Inside the enclave, operations that need the intervention

of an OS are prohibited. Intel SGX blocks an enclave applica-
tion from directly invoking syscalls to use the OS-provided
services (e.g., storage, network, or time). Instead, an enclave
developer defines software interfaces. Through this software
interface, a thread can temporarily exit the enclave, invoke
a syscall from the host function, and re-enter it.

2.2 Threat Model
Pave assumes three types of participants similar to [29]. A
service provider provides functions that process user data
and develops a software module to embody those functions.
The service provider should run its module using Pave to
assert and attest that its service protects the user privacy. A
data-processing service may be provided by combining one
or more such modules, each of which might be developed
by a different service provider. A user, or a user agent such
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Figure 1. A module is deployed without and with Pave.

as a browser or an application, wishes to protect user data
while being processed. The user initiates a request to the
module, transmits the data, selects how to process it (maybe
repeatedly), and receives the final result. As the user trusts
only Pave, it uses the data-processing service only if the
software module is protected by Pave. A cloud provider
provides a computing platform equipped with Intel SGX as
PaaS (Platform-as-a-Service) or serverless models. In PaaS
and serverless models, as illustrated in Figure 1, the cloud
provider manages not only network, storage, server, and vir-
tualization layers (as IaaSmodel), but also theOS and runtime
layers. Since these models reduce the burden for a cloud user
to manage the underlying layers, current cloud providers
support these models (e.g., AWS ECS, Azure Functions, and
Google Functions). On the other hand, the application layer
consists of a PaveBox, an external syscall handler, and a
data-processing module. Here, the external syscall handler
refers to the user-level code that redirects a syscall request
from the enclave to the OS and its response from the OS
to the enclave. While the service provider can observe the
software interfaces 2, the service provider cannot have root
privileges to access the lower layers (e.g., OS). Also, the user
can employ Intel SGX DCAP [71] to ensure that the module
is running on the cloud provider, which in turn guarantees
that the service provider does not have the root privilege.
We assume that the service provider and cloud provider

cannot be trusted, whereas the user is benign. Since Intel
SGX protects the enclave from any direct access, we focus
on the scenario in which the adversary uses the software
interface as a covert- or side-channel to leak the user data.
While some syscalls can be implemented without escaping
the enclave [85], the syscalls that use network device or stor-
age must be implemented with the software interface. The
service provider and cloud provider can observe such syscalls
invoked by the module code and attempt to infer private user
data. From now on, a syscall refers to a syscall implemented
with the software interface. Note that because the service
provider can deploy the module, it is capable of launching

2Although the cloud provider offers Pave as a service, the software interfaces
can be observed (e.g., audit logs such as AWS CloudWatch or network). For
generality, we assume that the software interfaces are directly visible.

both covert and side-channel attacks via the syscall interface.
Therefore, in terms of the attacks via software interface, the
service provider is a more powerful adversary than the cloud
provider, who is limited to side-channel attacks. In the later
sections, we assume that the adversary is a service provider
who targets the software interface as an attack surface.

We assume that the cloud provider does not collude with
the service provider. Therefore, the service provider cannot
launch side-channel attacks requiring the root privileges,
such as exploitation on Branch Prediction Units (BPU) [31,
50], L1/L2 cache [55], Translation Lookaside Buffer (TLB) [37],
last-level cache (LLC) [76], DRAM [63], page table [56, 98],
or microarchitecture [20, 46, 86, 87, 91]. We discuss the fea-
sibility of such attacks by the cloud provider in §7. Note that
fully preventing Iago-type attacks [19] is challenging [88].
Although these are out of our design scope, Pave should be
promptly updated when new vulnerabilities are disclosed.

3 Challenges
Figure 1 shows that the service provider 1 deploys a module
and 3 monitors the syscall handler. To prevent the adver-
sary from learning whether the user secret is X 2 , PaveBox
controls the syscall invocations 2’ . In this section, we model
our problem as timing-sensitive non-interference and func-
tionality preservation and identify challenges to achieve
them.
Challenge 1: Modeling and enforcing non-interference.
Consider a program that takes (and processes) both sensitive
data and non-sensitive data as input. In the traditional setting
where the program runs in a local machine, there exist both
trusted and untrusted output channels. A trusted channel
(e.g., local display) is securely protected from the adversary,
while an untrusted channel (e.g., network session with the
adversary) is observable by the adversary. A program is said
to be non-interferent if its output to the untrusted channel is
not influenced by sensitive inputs (say, private user data).
The health insurance premium calculator below takes

in (i) personal information pinfo and (ii) desired coverage
type cov_type. Then, it calculates the premiums of insurance
plans. We assume that pinfo is sensitive user data here.
1 premiums = calculate(pinfo, cov_type);

2 send_to_user(premiums);

3 if (contains(pinfo, "diabetes=1"))

4 for (int i=0; i<100000; i++) ;

5 send_to_user("Done\n");

Suppose that this example program runs on a user’s local
desktop. In this setting, the program satisfies non-interference
since send_to_user() is a trusted output channel that is in-
visible to an adversary.

In our threat model for remote service, however, no data
channels can be trusted since send_to_user() must transfer
the data over the network via syscalls. Even if we conceal its
payload with encryption, the occurrence of syscall remains
observable. As a result, an adversary can still infer whether
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the condition in Line 3 is satisfied by measuring the elapsed
time between the two send_to_user(). Therefore, we model
every syscall invocation as an untrusted channel.

To ensure the absence of such implicit leakages, a module
must satisfy timing-sensitive non-interference. A module is
timing-sensitive non-interferent if it exposes a consistent
sequence of syscalls (passed parameters, orders, and timings),
regardless of the sensitive input values. For network syscalls,
we can encrypt the content of messages (e.g., argument of
send_to_user() in this case), so we only have to consider the
order and timing of syscalls invocations.
For the timing-sensitive non-interference, we propose

shadow execution. PaveBox runs a duplicate of the module
(say, low execution). The low execution running in an isolated
execution environment is not allowed to access any sensitive
data and is given dummy values instead. It means that the
syscall invocations from the low execution are not affected
by the private user data. The PaveBox can control that the
module outputs the same sequence of syscall invocations as
the low execution. Instead of directly invoking the syscalls,
the original execution of the module (say, high execution)
delegates it to the low execution. The low execution is re-
sponsible for the syscall invocation, and the high execution
reuses its corresponding return.
To enforce the shadow execution, each execution should

be isolated from the others. The executions and the trusted
monitor operate at the same user-level privilege within the
enclave. It allows a compromised execution to bypass the
monitor. The PaveBox ensures that the low and high exe-
cutions cannot access each other’s data and the monitor by
using multi-domain Software Fault Isolation (SFI).
Timing-sensitive non-interference is one of the most re-

strictive privacy concepts. There are less restrictive concepts
called termination-sensitive non-interference and progress-
sensitive non-interference [7]. Since the external syscall han-
dler is controlled by the service provider, it can observe
the application layer interactions at any time. Thus, Pave
is designed to consider timing-sensitive non-interference.
Henceforth, ‘non-interference’ refers to timing-sensitive non-
interference.
Challenge 2: Exchanging sensitive data without trusted
channels. A subsequent challenge is how to enable the se-
cure exchange of sensitive data while our shadow execution
technique separates the low execution and high execution.
The high execution should process the real user data and re-
turn an output to the user. However, since the high execution
is restricted from directly invoking syscalls, including those
for network operations, it needs a mechanism to securely
acquire the user data from a network message that it cannot
access directly. Although the low execution invokes syscalls
to receive the network message that contains user data, note
that Pave must prevent the low execution from accessing
the sensitive data in the message.

For this, we introduce a shared buffer that is accessed in a
controlled fashion by the low and high executions. Before
the low execution receives an encrypted network message
from the user, the PaveBox decrypts and writes it into the
shared buffer. Each entry in the shared buffer is filled with
both a dummy value and the real user data. The PaveBox
ensures that the low execution can access only the dummy
values, whereas the high execution can access the real user
data. The output message to return is also produced with the
same principle. The high execution can update an entry in
the shared buffer with the output data derived from the user
data while the low execution is blocked from accessing this
output. Eventually, the response to the user is constructed
with the content in the shared buffer and then transmitted
through the low execution’s syscall invocation.
Challenge 3: Ensuring the functionality of benignmod-
ules. If the low execution runs too early or too late, the high
execution may fail to read the user data or write its output
data. Therefore, a proper scheduling discipline is needed to
preserve the functionality of a benign module. To achieve
it, the low and high executions are scheduled to keep pace
with each other in Pave.
Difference from Secure Multi-Execution (SME). Our
shadow execution shares the intuition with SME [27] in that
a given program is executed multiple times, once for each
security level. One of its key assumptions is the existence
of dedicated input and output channels for each security
level. In contrast, our threat model assumes that the service
provider can control the syscall interface, leaving no secure
channel for the high execution.

4 Design
4.1 Shadow Execution
Given a module, the PaveBox executes its two copies run-
ning in parallel as threads. We classify syscalls into two
groups: (1) those for handling user requests through the
network, and (2) those for accessing other kinds of system
resources. We discuss the first group of syscalls in §4.2. For
the second group, we simply reuse the results of the low
execution’s syscalls to handle those of the high execution.

Since an enclave operates as a single process domain, we
cannot rely on the OS process isolation to separate two dis-
tinct executions within it. Therefore, we use Software-Fault
Isolation (SFI) by extending Native Client (NaCl) [78], a well-
known SFI system based on address masking. NaCl ensures
that every memory access within a module is restricted to a
designated memory region.

In Pave, we further divide the module region into separate
areas for high and low executions [2, 14, 79]. Each execu-
tion is assigned a designated region for data, with all data
memory access adjusted to point to that region. The base
address for the data region is initialized in r14, ensuring that
each execution accesses its own data region [r14, r14+4GB),
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Table 1. An execution is provided with SP APIs for secure data exchange, which is mediated by the PaveBox.

API Name Description

session_accept(port) It accepts an incoming connection. It returns a session identifier sid.

session_connect(IP,port) It connects to a remote module using its IP and port. It returns a session identifier sid.

create_msg() It creates an empty message and returns its identifier mfd.

send_msg(sid,mfd) It sends the message mfd through the session sid.

receive_msg(sid) It receives a message from the session sid and returns an identifier mfd.

add_msg_entry(mfd,key,value,sec) It adds an entry to mfd with the key key, the sensitiveness sec, and the value value.

get_msg_entry(mfd,key,sec) It returns the value of the matched entry in the mfd with key and sec.

through address masking. The example below shows that
rbx is masked before it is accessed.

mov %ebx, %ebx # upper 32-bits are cleared

add %r14, %rbx

mov %rax, (%rbx)

Specifically, the following rules E1–E6 are applied to ensure
secure data access isolated for each execution.

• E1: The memory space for each execution consists of a
shared code region and a private data region.

• E2: The base addresses for the code and data regions are
initialized in r15 and r14, respectively. These registers
must remain unmodifiable.

• E3: All indirect data access instructions should use r14 for
its address to be in the range [r14, r14+4GB).

• E4: rsp and rbp can be modified by copying each other
without masking. Otherwise, they should be masked.

• E5: rip-relative addressing is disallowed.
• E6: Trampoline code securely transfers control between
an execution and a PaveBox. The code is attested by SGX.

Additionally, Pave adheres to the control transfer policies
from NaCl as follows.

• N1: The code section is divided into 32-byte aligned code
bundles. Neither individual instructions nor a series of
instructions modified for address masking cannot cross a
bundle boundary.

• N2: All indirect control flow instructions are masked to en-
sure that the target address is aligned with a 32-byte bun-
dle boundary. (e.g., and %eax, 0xffffffe0; jmp *%eax;)

• N3: ret, syscall, and int instructions are forbidden.

Forbidden syscall instructions (Rule N3) are replaced with
the trampoline code (Rule E6). The trampoline mechanism
invokes a context switch function to the PaveBox, which
saves the current execution context and loads the context
of PaveBox. The PaveBox then handles the syscall based
on the shadow execution. Afterwards, the context is re-
stored, switching back to the original execution. We provide
a toolchain to (1) generate a PaveBox-compliant binary and
(2) verify such compliance before running it (detailed in §4.4).

4.2 Secure Data Exchange
Shadow proxy (SP) is responsible for sensitive data exchange
via the shared buffer and secure sessions. It offers the mod-
ule with SP APIs listed in Table 1. Note that both low and
high executions are prevented from directly accessing the
secure session or shared buffer (Rule E3). Instead, the module
must invoke SP APIs, which is implemented through the
secure control transfer (Rule E6). Then, the SP will intercept
the calls and handle the requests securely. Suppose a sce-
nario where a single module processes a user request. When
session_accept() is called, it is the shadow proxy that es-
tablishes a session with the user. Since the user verifies the
integrity of the PaveBox through the remote attestation, the
module cannot impersonate the shadow proxy and establish
the session. We employ TLS with SGX extension [45] for
this.
Distributed Modules. When multiple modules collaborate,
user data should not be forwarded to any insecure module
(i.e., not controlled by Pave). To achieve this, a client-side
PaveBox, upon handling session_connect, performs the re-
mote attestation of a server-side PaveBox. They cannot mu-
tually authenticate since the user who is not equipped with
Intel SGX cannot be verified by remote attestation. Instead, a
pair of high and low executions is allowed to accept only one
incoming session from either a user or another execution pair.
Meanwhile, there is no restriction on the number of outgoing
sessions. That is, the user first verifies a PaveBox through
remote attestation when sending a request. Subsequently,
the verified PaveBox iteratively verifies other PaveBoxes.
Consequently, this chained remote attestation can guarantee
that the user data is only sent and received to the modules
controlled by Pave. Note that the PaveBox can still support
multi-threading and run multiple pairs of executions, each
of which handles a single request at a time.
Network Message Format. Pave defines a formatted net-
work message that can be interpreted by the PaveBox. The
message consists of multiple entries, and each of the entries
has three components: key, value, and security level. The
key is an index of the entry and the value contains the data
of the entry. The security level indicates whether the entry’s
data is sensitive (S) or non-sensitive (NS).
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1 int main() {
2 ...
3 sid = session_accept(PORT_NUM);
4 rcv_mfd = receive_msg(sid); 1 → 2
5 type = get_msg_entry(rcv_mfd, "cov_type", NS); 3
6 pinfo = get_msg_entry(rcv_mfd, "profile", S); 3
7 premium = calculate(pinfo, type); 3
8 send_mfd = create_msg();
9 // Line 10-11 breaks non-interference
10 if (contains(pinfo, "diabetes=1"))
11 for (int i=0; i<10000; i++) ;
12 add_msg_entry(send_mfd, "provider", "X Insurance", NS); 4
13 add_msg_entry(send_mfd, "result", premium, S); 4
14 send_msg(sid, send_mfd); 4 → 5
15 return 0;
16 }

(a) Example code.

“cov_type” NS “long-term”
“profile” S “diabetes=1,age…”

“cov_type” NS
H: “long-term”
L: “long-term”

“profile” S
H: “diabetes=1,age…”
L: “diabetes=0,age…” 

“provider” NS
H: “X Insurance”
L: “X Insurance”

“result” S
H: “$200”
L: “$100”

“provider” NS “X Insurance”
“result” S “$200”
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(b) State changes in different areas.

Figure 2. The example program and corresponding state changes of the shared buffer and the module data regions are shown.

The SP APIs allow an execution to send or receive mes-
sages and to read or write entries within these messages (un-
der the control of the PaveBox). In low execution, send_msg
and receive_msg internally trigger network syscalls, whereas
high execution simply ignores these API calls. Meanwhile,
add_msg_entry and get_msg_entry enable high and low exe-
cutions to access the data authorized for each level. Figure 2
illustrates an example where the module processes a user
request for the insurance premium calculation service. When
a message is received (Line 4), the SP replaces the value of
each entry with a pair of fields (L and H) and stores it in a
shared buffer (from 1 to 2 )3. For S entries, the SP popu-
lates the L field with a predefined dummy value and the H

field with the actual user data. For NS entries, both fields are
filled with the actual user data. Note that there is no strict
requirement on how these dummy values are set, as long as
they are determined independently of any sensitive values.

Themessage is identified by an abstract descriptor (rcv_mfd
in Figure 2). Using this descriptor, the low execution is al-
lowed to access only the L field, while the high execution
can access only the H field (Line 5–6 and 3 in Figure 2). In
Line 7, the calculated premium can vary depending on type

and pinfo (say 100 and 200 for example, as shown in 3
of Figure 2).

To send a response, the executions create a new message
(Line 8) and populate the corresponding H or L fields (Line 12–
13; 4 in Figure 2b). When the message is sent, the SP ex-
tracts an appropriate field for each entry (from 4 to 5
in Figure 2b.) For S entries, H fields are used, while L fields
are used for NS entries. Extracting H fields for S entries is
necessary since these fields contain the actual outputs com-
puted from the user data. For NS entries, PAVE must avoid
extracting the H values computed from the high execution.
Otherwise, if the populated message is passed to another
module (not the user), the receiving module can leak the

3As an alternative design, the user agent can populate these pairs instead of
the SP when it is sent. Hence, dummy values are not required in PaveBox.

private data produced in the high execution. Note that when
sending a message, the SP ensures that its length is set to a
pre-determined constant value to prevent traffic analysis.

As shown in §3, this program violates non-interference be-
cause the timing of syscall is affected by sensitive data pinfo.
However, in Pave, send_msg only triggers syscall in low exe-
cution, and the branch condition in Line 10 is always unsatis-
fied by the dummy value used in the low execution. Thus, the
timing of syscall invocation remains consistent. Addition-
ally, when the high execution finishes in Line 15, PaveBox
intercepts its exit syscall and delays its termination. Only
when the low execution finishes, PaveBox intercepts its exit
syscall and terminates the both executions. Note that there
is a chance that the output of high execution is not properly
sent back to the user. As explained earlier, Pave does not
guarantee the functionality of insecure programs.

4.3 Scheduling
To enforce non-interference in the execution under Pave, the
scheduler for low and high execution must be input-agnostic.
We can model the result of scheduling as a sequence of L
and H (e.g., [L, H, H, ...]). Input-agnostic scheduling means that
such result is not affected by the sensitive user data. For the
example in Figure 2, let us assume a scheduler that makes
the low execution wait at send_msg in Line 14 until the high
execution reaches the same API call. This scheduler is not
input-agnostic, as the resulting scheduling sequence will
depend on the profile field of the input. Not surprisingly,
the execution under such scheduler will leak the private data
through the timing of syscall. One safe scheduling that Pave
can adopt is simply letting the OS scheduler to choose be-
tween the two threads for low and high execution. Since the
OS cannot access the SGX enclave, it cannot inspect memory
data or program counter of these executions. Therefore, this
scheduler can be considered input-agnostic.
Meanwhile, to preserve the functionality of secure pro-

grams, using input-agnostic scheduler is not enough. For
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example, let us assume that Line 10 in Figure 2 is changed
to if (type == “long_term”) and uses non-sensitive data in-
stead. Now the program is non-interferent and Pave must
preserve its functionality. For this, the two executions must
keep pace with each other. Intuitively, both executions must
reach Line 14 at the same time to ensure that the response
message is correctly filled in by the high execution before
the low execution sends it.

PaveBox achieves this by synchronizing two executions
in terms of the number of executed basic blocks. For this,
our toolchain instruments the module during compilation
by inserting a synchronization instruction in every basic
block. Note that each syscall, implemented as a wrapper func-
tion, is also instrumented with a synchronization instruction.
When this synchronization instruction is executed, the con-
trol of the running thread is transferred to the PaveBox. The
PaveBox will check how many basic blocks have been exe-
cuted by low and high execution respectively, and chooses
the next thread to execute in a similar manner to Hyper-
Race [21]. Intuitively, the result of our synchronized sched-
uler is fixed as an alternate sequence of L and H ([L, H, L, H,
...]), where the execution unit is a basic block. Therefore, this
scheduler is also input-agnostic. In §5, we formally model
and prove the non-interference and functionality preserva-
tion under appropriate schedulers.

4.4 PaveBox Initialization
To load a module, the service provider sends its encrypted
binary to the PaveBox via TLS [45]. The PaveBox loader de-
crypts it inside the enclave, keeping it confidential even from
the cloud provider and preventing analysis of its behavior.
Before loading the binary, we need to ensure compli-

ance with SFI (§4.1) and synchronization (§4.3). First, as
in NaCl, the PaveBox validator statically analyzes every in-
struction to confirm that only legal instructions are present.
The PaveBox will load the binary only if it passes the SFI
validation. Next, the validator checks whether each basic
block in the binary is instrumented with a synchronization
instruction. If the verification fails, PaveBox will ignore syn-
chronization instructions during the execution, to prevent
the scheduling of PaveBox from behaving in an unexpected
way. When the synchronization is disabled, the execution
under PaveBox falls back on the OS scheduler discussed in
§4.3. Although sound and complete identification of basic
blocks is impossible in general setting, Pave only requires
a sound validator that conservatively rejects uncertain bi-
naries. The completeness of the validator can be enhanced
in the future by employing state-of-the-art binary analysis
techniques [28, 44, 59, 94].

5 Security Analysis
Figure 3 presents the syntax of our model language. For
brevity, we assume that a module has only one network

Command 𝑐 ::= recv
| send
| get 𝑘 to 𝑥

| add 𝑥 to 𝑘

| skip
| 𝑥 := 𝑒

| 𝑐 ;𝑐
| if 𝑒 then 𝑐 else 𝑐

| while 𝑒 do 𝑐

Figure 3. The syntax of our model language is presented.

(𝑆1)
𝐼 = [𝑎1, 𝑎2, ..., 𝑎𝑛 ] 𝐼 ′ = [𝑎2, ..., 𝑎𝑛 ]

⟨recv,𝑚, 𝑎, 𝐼 ,𝑂 ⟩ → ⟨skip,𝑚, 𝑎1, 𝐼
′,𝑂 ⟩

(𝑆2)
𝑂 = [𝑎1, ..., 𝑎𝑛 ] 𝑂′ = [𝑎1, ..., 𝑎𝑛, 𝑎]
⟨send,𝑚, 𝑎, 𝐼 ,𝑂 ⟩ → ⟨skip,𝑚, 𝑎, 𝐼 ,𝑂′⟩

(𝑆3)
𝑎 (𝑘) = 𝑣 𝑚′ =𝑚 [𝑥 ↦→ 𝑣 ]

⟨get 𝑘 to 𝑥,𝑚,𝑎, 𝐼 ,𝑂 ⟩ → ⟨skip,𝑚′, 𝑎, 𝐼 ,𝑂 ⟩

(𝑆4)
𝑚 (𝑥) = 𝑣 𝑎′ = 𝑎 [𝑘 ↦→ 𝑣 ]

⟨add 𝑥 to 𝑘,𝑚,𝑎, 𝐼 ,𝑂 ⟩ → ⟨skip,𝑚, 𝑎′, 𝐼 ,𝑂 ⟩

(𝑆5)
𝑒𝑣𝑎𝑙 (𝑒,𝑚) = 𝑣 𝑚′ =𝑚 [𝑥 ↦→ 𝑣 ]

⟨𝑥 := 𝑒,𝑚, 𝑎, 𝐼 ,𝑂 ⟩ → ⟨skip,𝑚′, 𝑎, 𝐼 ,𝑂 ⟩

(𝑆6)
⟨skip;𝑐2,𝑚, 𝑎, 𝐼 ,𝑂 ⟩ → ⟨𝑐2,𝑚, 𝑎, 𝐼 ,𝑂 ⟩

(𝑆7)
⟨𝑐1,𝑚, 𝑎, 𝐼 ,𝑂 ⟩ → ⟨𝑐′1,𝑚′, 𝑎′, 𝐼 ′,𝑂′⟩

⟨𝑐1;𝑐2,𝑚, 𝑎, 𝐼 ,𝑂 ⟩ → ⟨𝑐′1;𝑐2,𝑚′, 𝑎′, 𝐼 ′,𝑂′⟩

(𝑆8)
𝑒𝑣𝑎𝑙 (𝑒,𝑚) ≠ 0

⟨if 𝑒 then 𝑐1 else 𝑐2,𝑚, 𝑎, 𝐼 ,𝑂 ⟩ → ⟨𝑐1,𝑚, 𝑎, 𝐼 ,𝑂 ⟩

(𝑆9)
𝑒𝑣𝑎𝑙 (𝑒,𝑚) = 0

⟨if 𝑒 then 𝑐1 else 𝑐2,𝑚, 𝑎, 𝐼 ,𝑂 ⟩ → ⟨𝑐2,𝑚, 𝑎, 𝐼 ,𝑂 ⟩

(𝑆10)
𝑒𝑣𝑎𝑙 (𝑒,𝑚) ≠ 0

⟨while 𝑒 do 𝑐,𝑚, 𝑎, 𝐼 ,𝑂 ⟩ → ⟨𝑐 ; while 𝑒 do 𝑐,𝑚, 𝑎, 𝐼 ,𝑂 ⟩

(𝑆11)
𝑒𝑣𝑎𝑙 (𝑒,𝑚) = 0

⟨while 𝑒 do 𝑐,𝑚, 𝑎, 𝐼 ,𝑂 ⟩ → ⟨skip,𝑚, 𝑎, 𝐼 ,𝑂 ⟩

Figure 4. Standard execution semantics without PaveBox.

session that is already established, and manipulates only one
networkmessage at a time. As a result, SP APIs in Table 1 are
simplified as follow. First, recv (which models receive_msg)
reads a message from the session, while send (for send_msg)
transmits a message to the user. In this section, we will refer
to recv and send as syscalls, as the SP will internally invoke
syscalls for these statements. Also, get (for get_msg_entry)
reads the value for key 𝑘 from the message and add (for
add_msg_entry) updates the value for key 𝑘 in the message.
We assume that the set of keys for sensitive and non-sensitive
entry is predefined as 𝐾𝑆 and 𝐾𝑁𝑆 respectively.

5.1 Standard Semantics
We define the standard semantics as transition rules of an ex-
ecution state ⟨𝑐,𝑚, 𝑎, 𝐼 ,𝑂⟩. Here, 𝑐 represents the commands
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to be executed and memory𝑚 is a mapping from variable to
value. Key-value map 𝑎 represents a network message stored
in the shared buffer. Input 𝐼 denotes the list of messages that
will be provided to the module and output 𝑂 denotes the
accumulated list of the transmitted messages.
Figure 4 presents relation → for the transition rules of

an execution state. This standard semantics describes the
original behavior of the module without PaveBox. Func-
tion 𝑒𝑣𝑎𝑙 (𝑒,𝑚) evaluates the given expression 𝑒 under the
memory state𝑚, and𝑚[𝑘 ↦→ 𝑣] denotes a map obtained by
updating𝑚 to have value 𝑣 for key 𝑘 . We consider𝑚(𝑘) to
return⊥ if key 𝑘 is not found in map𝑚. Rule (S1) models the
receiving of input message into the shared buffer, while (S2)
models the transmission of the current message stored in
the shared buffer. Although our simplified model processes
only one network message at a time, it is straightforward to
extend this and support multiple messages distinguished by
descriptors, as in §4.2.

5.2 PaveBox Semantics
Figure 5 defines relation ⇒ for the local semantics for the
low or high execution. Local state ⟨𝑐,𝑚⟩𝑙 denotes remaining
commands 𝑐 and memory𝑚 for the execution level 𝑙 (i.e.,
𝐿 or 𝐻 ). Other components such as 𝑎, 𝐼 , and 𝑂 are shared
by the two executions. The syscall operations are delegated
to the low execution, as described in (L1) to (L4). To de-
fine the low execution semantics for recv, we introduce a
pre-processing function that generates a pair of values for
each message entry. For the key 𝑘 and value 𝑣 of an entry,
we define 𝑝𝑎𝑖𝑟 (𝑘, 𝑣) as ⟨𝑣, 𝑣⟩ if 𝑘 ∈ 𝐾𝑁𝑆 and ⟨𝑣𝑑𝑒𝑓 (𝑘), 𝑣⟩ if
𝑘 ∈ 𝐾𝑆 , where 𝑣𝑑𝑒𝑓 (𝑘) is the pre-determined dummy value
for 𝑘 . We can also extend this for a network message 𝑎 as
{(𝑘, 𝑣 ′) | (𝑘, 𝑣) ∈ 𝑎, 𝑣 ′ = 𝑝𝑎𝑖𝑟 (𝑘, 𝑣)}. The pre-processed mes-
sage is then stored in the shared buffer. For send, the low
execution should construct an output message by extract-
ing proper fields from the message in the shared buffer. We
define a function 𝑒𝑥𝑡 (𝑘, ⟨𝑣𝐿, 𝑣𝐻 ⟩) as 𝑣𝐿 if 𝑘 ∈ 𝐾𝑁𝑆 and 𝑣𝐻 if
𝑘 ∈ 𝐾𝑆 and extend it over a message 𝑎, by defining 𝑒𝑥𝑡 (𝑎)
as {(𝑘, 𝑣 ′) | (𝑘, 𝑣) ∈ 𝑎, 𝑣 ′ = 𝑒𝑥𝑡 (𝑘, 𝑣), 𝑣 ′ ≠ ⊥}. (L5) to (L7) de-
scribe controlled access to the message in the shared buffer
based on the execution level.

Figure 6 defines the global execution semantics over both
executions. (G1a) and (G1b) define the global execution se-
mantics when the scheduling result is provided as 𝑠 . Here,
counter 𝑛 is initialized to 0 and incremented per every lo-
cal transition. As discussed in §4.3, the scheduling result
𝑠 is a sequence of L and H, and 𝑠 [𝑛] tells which execution
level will be taken. Note that the global executions will stop
when the low execution terminates, since (L11) delays the
termination of high execution. Next, (G2) defines relation
{, which the execution under the synchronized scheduling
of PaveBox. In (G2), low and high executions are executed
alternately, so this can be thought as a special case of (G1a)
and (G1b) where 𝑠 = [𝐿, 𝐻, 𝐿, 𝐻, ...]. Note that our formal

(𝐿1)
𝐼 = [𝑎1, 𝑎2, ..., 𝑎𝑛 ] 𝐼 ′ = [𝑎2, ..., 𝑎𝑛 ]

⟨⟨recv,𝑚⟩𝐿, 𝑎, 𝐼 ,𝑂 ⟩ ⇒ ⟨⟨skip,𝑚⟩𝐿, 𝑝𝑎𝑖𝑟 (𝑎1), 𝐼 ′,𝑂 ⟩

(𝐿2)
⟨⟨recv,𝑚⟩𝐻 , 𝑎, 𝐼 ,𝑂 ⟩ ⇒ ⟨⟨skip,𝑚⟩𝐻 , 𝑎, 𝐼 ,𝑂 ⟩

(𝐿3)
𝑂 = [𝑎1, ..., 𝑎𝑛 ] 𝑂′ = [𝑎1, ..., 𝑎𝑛, 𝑒𝑥𝑡 (𝑎) ]
⟨⟨send,𝑚⟩𝐿, 𝑎, 𝐼 ,𝑂 ⟩ ⇒ ⟨⟨skip,𝑚⟩𝐿, 𝑎, 𝐼 ,𝑂′⟩

(𝐿4)
⟨⟨send,𝑚⟩𝐻 , 𝑎, 𝐼 ,𝑂 ⟩ ⇒ ⟨⟨skip,𝑚⟩𝐻 , 𝑎, 𝐼 ,𝑂 ⟩

(𝐿5)
𝑎 (𝑘) = ⟨𝑣𝐿, 𝑣𝐻 ⟩ 𝑚′ =𝑚 [𝑥 ↦→ 𝑣𝑙 ]

⟨⟨get 𝑘 to 𝑥,𝑚⟩𝑙 , 𝑎, 𝐼 ,𝑂 ⟩ ⇒ ⟨⟨skip,𝑚′⟩𝑙 , 𝑎, 𝐼 ,𝑂 ⟩

(𝐿6)
𝑚 (𝑥) = 𝑣 𝑎 (𝑘) = ⟨𝑣𝐿, 𝑣𝐻 ⟩ 𝑎′ = 𝑎 [𝑘 ↦→ ⟨𝑣, 𝑣𝐻 ⟩]
⟨⟨add 𝑥 to 𝑘,𝑚⟩𝐿, 𝑎, 𝐼 ,𝑂 ⟩ ⇒ ⟨⟨skip,𝑚⟩𝐿, 𝑎′, 𝐼 ,𝑂 ⟩

(𝐿7)
𝑚 (𝑥) = 𝑣 𝑎 (𝑘) = ⟨𝑣𝐿, 𝑣𝐻 ⟩ 𝑎′ = 𝑎 [𝑘 ↦→ ⟨𝑣𝐿, 𝑣⟩]
⟨⟨add 𝑥 to 𝑘,𝑚⟩𝐻 , 𝑎, 𝐼 ,𝑂 ⟩ ⇒ ⟨⟨skip,𝑚⟩𝐻 , 𝑎′, 𝐼 ,𝑂 ⟩

(𝐿8)
𝑒𝑣𝑎𝑙 (𝑒,𝑚) = 𝑣 𝑚′ =𝑚 [𝑥 ↦→ 𝑣 ]

⟨⟨𝑥 := 𝑒,𝑚⟩𝑙 , 𝑎, 𝐼 ,𝑂 ⟩ ⇒ ⟨⟨skip,𝑚′⟩𝑙 , 𝑎, 𝐼 ,𝑂 ⟩

(𝐿9)
⟨⟨skip;𝑐2,𝑚⟩𝑙 , 𝑎, 𝐼 ,𝑂 ⟩ ⇒ ⟨⟨𝑐2,𝑚⟩𝑙 , 𝑎, 𝐼 ,𝑂 ⟩

(𝐿10)
𝑐1 ≠ skip ⟨⟨𝑐1,𝑚⟩𝑙 , 𝑎, 𝐼 ,𝑂 ⟩ ⇒ ⟨⟨𝑐′1,𝑚′⟩

𝑙
, 𝑎′, 𝐼 ′,𝑂′⟩

⟨⟨𝑐1;𝑐2,𝑚⟩𝑙 , 𝑎, 𝐼 ,𝑂 ⟩ ⇒ ⟨⟨𝑐′1;𝑐2,𝑚′⟩
𝑙
, 𝑎′, 𝐼 ′,𝑂′⟩

(𝐿11)
⟨⟨skip,𝑚⟩𝐻 , 𝑎, 𝐼 ,𝑂 ⟩ ⇒ ⟨⟨skip,𝑚⟩𝐻 , 𝑎, 𝐼 ,𝑂 ⟩

(𝐿12)
𝑒𝑣𝑎𝑙 (𝑒,𝑚) ≠ 0

⟨⟨if 𝑒 then 𝑐1 else 𝑐2,𝑚⟩𝑙 , 𝑎, 𝐼 ,𝑂 ⟩ ⇒
⟨⟨𝑐1,𝑚⟩𝑙 , 𝑎, 𝐼 ,𝑂 ⟩

(𝐿13)
𝑒𝑣𝑎𝑙 (𝑒,𝑚) = 0

⟨⟨if 𝑒 then 𝑐1 else 𝑐2,𝑚⟩𝑙 , 𝑎, 𝐼 ,𝑂 ⟩ ⇒
⟨⟨𝑐2,𝑚⟩𝑙 , 𝑎, 𝐼 ,𝑂 ⟩

(𝐿14)
𝑒𝑣𝑎𝑙 (𝑒,𝑚) ≠ 0

⟨⟨while 𝑒 do 𝑐,𝑚⟩𝑙 , 𝑎, 𝐼 ,𝑂 ⟩ ⇒
⟨⟨𝑐 ; while 𝑒 do 𝑐,𝑚⟩𝑙 , 𝑎, 𝐼 ,𝑂 ⟩

(𝐿15)
𝑒𝑣𝑎𝑙 (𝑒,𝑚) = 0

⟨⟨while 𝑒 do 𝑐,𝑚⟩𝑙 , 𝑎, 𝐼 ,𝑂 ⟩ ⇒ ⟨⟨skip,𝑚⟩𝑙 , 𝑎, 𝐼 ,𝑂 ⟩

Figure 5. Local semantics under PaveBox.

(𝐺1𝑎)
𝑠 [𝑛] = 𝐿 ⟨⟨𝑐1,𝑚1 ⟩𝐿, 𝑎, 𝐼 ,𝑂 ⟩ ⇒ ⟨⟨𝑐′1,𝑚′

1 ⟩𝐿, 𝑎
′, 𝐼 ′,𝑂′⟩

⟨⟨𝑐1,𝑚1 ⟩, ⟨𝑐2,𝑚2 ⟩, 𝑎, 𝐼 ,𝑂,𝑛⟩ 𝑠d

⟨⟨𝑐′1,𝑚′
1 ⟩, ⟨𝑐2,𝑚2 ⟩, 𝑎′, 𝐼 ′,𝑂′, 𝑛 + 1⟩

(𝐺1𝑏)
𝑠 [𝑛] = 𝐻 ⟨⟨𝑐2,𝑚2 ⟩𝐻 , 𝑎, 𝐼 ,𝑂 ⟩ ⇒ ⟨⟨𝑐′2,𝑚′

2 ⟩𝐻 , 𝑎′, 𝐼 ′,𝑂′⟩
⟨⟨𝑐1,𝑚1 ⟩, ⟨𝑐2,𝑚2 ⟩, 𝑎, 𝐼 ,𝑂,𝑛⟩ 𝑠d

⟨⟨𝑐1,𝑚1 ⟩, ⟨𝑐′2,𝑚′
2 ⟩, 𝑎′, 𝐼 ′,𝑂′, 𝑛 + 1⟩

(𝐺2)

⟨⟨𝑐1,𝑚1 ⟩𝐿, 𝑎, 𝐼 ,𝑂 ⟩ ⇒ ⟨⟨𝑐′1,𝑚′
1 ⟩𝐿, 𝑎

′, 𝐼 ′,𝑂′⟩
⟨⟨𝑐2,𝑚2 ⟩𝐻 , 𝑎′, 𝐼 ′,𝑂′⟩ ⇒ ⟨⟨𝑐′2,𝑚′

2 ⟩𝐻 , 𝑎′′, 𝐼 ′′,𝑂′′⟩
⟨⟨𝑐1,𝑚1 ⟩, ⟨𝑐2,𝑚2 ⟩, 𝑎, 𝐼 ,𝑂 ⟩ { ⟨⟨𝑐′1,𝑚′

1 ⟩, ⟨𝑐′2,𝑚′
2 ⟩, 𝑎′′, 𝐼 ′′,𝑂′′⟩

Figure 6. Global semantics under PaveBox.

model synchronizes the execution with a granularity of one
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local transition step. In §7, we discuss the difference between
our model and implementation that comes from this point.

5.3 Security Properties
For any transition ↩→, we define ↩→𝑛 to mean a transition by
applying ↩→ for 𝑛 times. We abuse ↩→𝑛 by defining it over
the essential input and output components. With standard
semantics on program 𝑃 and input 𝐼 , if ⟨𝑃,𝑚0, 𝑎0, 𝐼 ,𝑂0⟩ →𝑛

⟨𝑐,𝑚, 𝑎, 𝐼 ′,𝑂 ′⟩ holds where𝑚0 and 𝑎0 are empty maps and
𝑂0 is an empty list, we also say that (𝑃, 𝐼 ) →𝑛 (𝐼 ′,𝑂 ′) holds.
Next, we introduce the equivalence between two inputs
(or two outputs). For messages 𝑎 and 𝑎′, we say 𝑎=𝑁𝑆𝑎

′ iff
𝑑𝑜𝑚(𝑎) = 𝑑𝑜𝑚(𝑎′) and ∀𝑘 ∈ 𝑑𝑜𝑚(𝑎) ∩ 𝐾𝑁𝑆 , 𝑎(𝑘) = 𝑎′(𝑘).
Similarly, we say 𝑎=𝑆𝑎

′ iff 𝑑𝑜𝑚(𝑎) = 𝑑𝑜𝑚(𝑎′) and ∀𝑘 ∈
𝑑𝑜𝑚(𝑎) ∩𝐾𝑆 , 𝑎(𝑘) = 𝑎′(𝑘). Now, we extend =𝑁𝑆 on message
lists 𝐴 = [𝑎1, ..., 𝑎𝑛] and 𝐴′ = [𝑎′1, ..., 𝑎′𝑚]. We say 𝐴=𝑁𝑆𝐴

′ iff
𝑙𝑒𝑛(𝐴) = 𝑙𝑒𝑛(𝐴′) and ∀𝑖 .1 ≤ 𝑖 ≤ 𝑛, 𝑎𝑖=𝑁𝑆𝑎

′
𝑖 . We can extend

=𝑆 in the same way.

Definition 1 (Non-interference). Assume a program 𝑃 ,
semantics ↩→, and two inputs 𝐼1, 𝐼2 such that 𝐼1=𝑁𝑆 𝐼2. Non-
interference of 𝑃 under ↩→ means that ∀𝑛 ≥ 0, if (𝑃, 𝐼1) ↩→𝑛

(𝐼 ′1,𝑂 ′
1), then (𝑃, 𝐼2) ↩→𝑛 (𝐼 ′2,𝑂 ′

2), 𝐼 ′1=𝑁𝑆 𝐼
′
2 and𝑂

′
1=𝑁𝑆𝑂

′
2 hold.

This definition implies 𝑙𝑒𝑛(𝐼 ′1) = 𝑙𝑒𝑛(𝐼 ′2) and 𝑙𝑒𝑛(𝑂 ′
1) =

𝑙𝑒𝑛(𝑂 ′
2). This captures the consistent syscall pattern of the

two executions. For example, if there exists 𝑛 that makes
𝑙𝑒𝑛(𝑂 ′

1) ≠ 𝑙𝑒𝑛(𝑂 ′
2), it means that the number of send syscalls

observed in two executions do not match at this time point.
Now we define the non-interference property under an

input-agnostic scheduling (§4.3). Input-agnostic scheduler
must output the same sequence for 𝐼1 and 𝐼2 in Definition 1.
We let this arbitrary sequence as 𝑠 in the following theorem.

Theorem 1 (Non-interference of PaveBox). For any pro-
gram 𝑃 and sequence 𝑠 , 𝑃 is non-interferent under 𝑠d.

Next, we define the functionality preservation of Pave.
PaveBox should not amend the execution output of a module
that is non-inteferent under the standard semantics.

Theorem 2 (Transparency). Assume a program 𝑃 that is
non-interferent under →. Now, ∀𝑛 ≥ 0, if (𝑃, 𝐼 ) →𝑛 (𝐼1,𝑂1),
then (𝑃, 𝐼 ) {𝑛 (𝐼2,𝑂2) holds where 𝑂1 = 𝑂2.

5.4 Proof of Non-Interference
First, we introduce equivalence over the L fields (or H fields).
For two tuples 𝑣 = ⟨𝑣𝐿, 𝑣𝐻 ⟩ and 𝑣 ′ = ⟨𝑣 ′

𝐿
, 𝑣 ′

𝐻
⟩, we say 𝑣=𝐿𝑣

′ iff
𝑣𝐿 = 𝑣 ′

𝐿
. Also, we say 𝑣=𝐻𝑣

′ iff 𝑣𝐻 = 𝑣 ′
𝐻
. We extend this over

two messages 𝑎 and 𝑎′ in the shared buffer. We say 𝑎=𝐿𝑎
′

iff ∀𝑘 ∈ 𝑑𝑜𝑚(𝑎) ∪ 𝑑𝑜𝑚(𝑎′), 𝑎(𝑘)=𝐿𝑎
′(𝑘). We also extend =𝐻

over messages in the same way.
From the definition of =𝑁𝑆 , =𝐿 , and 𝑝𝑎𝑖𝑟 (), it is trivial to

show that for two input messages 𝑎 and 𝑎′, if 𝑎=𝑁𝑆𝑎
′, then

𝑝𝑎𝑖𝑟 (𝑎)=𝐿 𝑝𝑎𝑖𝑟 (𝑎′) holds. Also, we can show that for two
messages 𝑎 and 𝑎′ stored in the shared buffer, if 𝑎=𝐿𝑎

′, then
𝑒𝑥𝑡 (𝑎)=𝑁𝑆𝑒𝑥𝑡 (𝑎′) holds.

Now we introduce two lemmas to prove Theorem 1.
Lemma 1 (Equivalence in Low Execution). Assume two
transitions ⟨⟨𝑐,𝑚⟩𝐿, 𝑎1, 𝐼1,𝑂1⟩ ⇒ ⟨⟨𝑐 ′1,𝑚′

1⟩𝐿, 𝑎
′
1, 𝐼

′
1,𝑂

′
1⟩ and

⟨⟨𝑐,𝑚⟩𝐿, 𝑎2, 𝐼2,𝑂2⟩ ⇒ ⟨⟨𝑐 ′2,𝑚′
2⟩𝐿, 𝑎

′
2, 𝐼

′
2,𝑂

′
2⟩, where 𝑎1=𝐿𝑎2,

𝐼1=𝑁𝑆 𝐼2, and 𝑂1=𝑁𝑆𝑂2 hold. Then, 𝑐 ′1 = 𝑐
′
2,𝑚

′
1 =𝑚

′
2, 𝑎

′
1=𝐿𝑎

′
2,

𝐼 ′1=𝑁𝑆 𝐼
′
2, and 𝑂

′
1=𝑁𝑆𝑂

′
2 hold.

Lemma 2 (Confinement of High Execution). Assume
a transition ⟨⟨𝑐,𝑚⟩𝐻 , 𝑎, 𝐼 ,𝑂⟩ ⇒ ⟨⟨𝑐 ′,𝑚′⟩𝐻 , 𝑎′, 𝐼 ′,𝑂 ′⟩. Then,
𝑎=𝐿𝑎

′, 𝐼 = 𝐼 ′ and 𝑂 = 𝑂 ′ hold.
Intuitively, Lemma 1 means that if two low execution

states have the same L fields in shared buffer and NS entries
in messages, then this equivalence is maintained after one
step of low execution. Lemma 2 states that a high execution
step cannot break this equivalence as well.

Proof of Lemma 1. We can prove Lemma 1 and Lemma 2
by examining the semantic rules in Figure 5. First, we can
see that transition of a local state from ⟨𝑐,𝑚⟩𝐿 to ⟨𝑐 ′𝑖 ,𝑚′

𝑖 ⟩𝐿 in
the lemma is always decided by 𝑐 ,𝑚, and the L fields of 𝑎𝑖 .
Since 𝑎1=𝐿𝑎2, we can prove 𝑐 ′1 = 𝑐

′
2 and𝑚

′
1 =𝑚

′
2.

Now we consider the semantic rules that can affect the
global state 𝑎𝑖 , 𝐼𝑖 , and 𝑂𝑖 . To start with, when 𝑐 is add 𝑥

to 𝑘 , it can update the L fields in 𝑎𝑖 . Still, we know that 𝑎1
and 𝑎2 will always be updated with the same value,𝑚(𝑥).
Therefore, 𝑎′1=𝐿𝑎

′
2 holds when 𝑐 is add 𝑥 to 𝑘 . Next, recv

command can also update the global state. Recall that if
𝑎=𝑁𝑆𝑎

′, then 𝑝𝑎𝑖𝑟 (𝑎)=𝐿𝑝𝑎𝑖𝑟 (𝑎′) holds. Using this property
and 𝐼1=𝑁𝑆 𝐼2 in assumption, we can show 𝑎′1=𝐿𝑎

′
2 and 𝐼

′
1=𝑁𝑆 𝐼

′
2

hold by examining (L1). Similarly, we have shown that if
𝑎=𝐿𝑎

′, then 𝑒𝑥𝑡 (𝑎)=𝑁𝑆𝑒𝑥𝑡 (𝑎′) holds. Thus, when 𝑐 is send,
we can use this property and 𝑎1=𝐿𝑎2 to show that 𝑂 ′

1=𝑁𝑆𝑂
′
2

by examining (L3).
Proof of Lemma 2. We can also prove this lemma by

examining the high execution’s semantic rules in Figure 5.
In the high execution, the semantic rules prevent any update
on 𝐼 and𝑂 . Also, rule (L7) only allows updates to the H fields
of 𝑎. Therefore, 𝑎=𝐿𝑎

′ holds. Consequently, Lemma 2 holds.
Proof of Theorem 1. Suppose two inputs 𝐼1 and 𝐼2 such

that 𝐼1=𝑁𝑆 𝐼2 holds. We will prove the following property
that subsumes Theorem 1: ∀𝑛 ≥ 0, if ⟨𝑆0, 𝑆0, 𝑎0, 𝐼1,𝑂0, 0⟩ 𝑠d𝑛

⟨𝐿′1, 𝐻 ′
1, 𝑎

′
1, 𝐼

′
1,𝑂

′
1, 𝑛⟩ then ⟨𝑆0, 𝑆0, 𝑎0, 𝐼2,𝑂0, 0⟩ 𝑠d𝑛 ⟨𝐿′2, 𝐻 ′

2, 𝑎
′
2, 𝐼

′
2,

𝑂 ′
2, 𝑛⟩, where 𝐿′1 = 𝐿′2, 𝑎

′
1=𝐿𝑎

′
2, 𝐼

′
1=𝑁𝑆 𝐼

′
2, and 𝑂

′
1=𝑁𝑆𝑂

′
2. 𝑆0 is

the initial local state ⟨𝑃,𝑚0⟩, where 𝑃 in an input program.
First, this property trivially holds when 𝑛 = 0. Next, we

can prove that if this property holds for 𝑛 = 𝑘 , it also holds
for 𝑛 = 𝑘 + 1 by Lemma 1 and Lemma 2. When 𝑠 [𝑘] = L,
Lemma 1 directly proves that 𝐿′1 = 𝐿

′
2, 𝑎

′
1=𝐿𝑎

′
2, 𝐼

′
1=𝑁𝑆 𝐼

′
2, and

𝑂 ′
1=𝑁𝑆𝑂

′
2 hold for 𝑛 = 𝑘 + 1. Meanwhile when 𝑠 [𝑘] = H, we

can first see 𝐿′1 = 𝐿
′
2 holds for 𝑛 = 𝑘 + 1 from rule (G1b) in

Figure 6. Also, Lemma 2 states that 𝐼 and𝑂 do not change in
the high execution step, so 𝐼 ′1=𝑁𝑆 𝐼

′
2 and 𝑂

′
1=𝑁𝑆𝑂

′
2 also hold

for 𝑛 = 𝑘 + 1. In addition, Lemma 2 also shows that =𝐿 holds
between the two 𝑎′1 for 𝑛 = 𝑘 and 𝑛 = 𝑘 + 1. The same holds
for 𝑎′2 as well. Thus, 𝑎

′
1=𝐿𝑎

′
2 holds for 𝑛 = 𝑘 + 1, from the
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induction hypothesis and the transitivity of =𝐿 . Therefore,
the property above is proved by induction on 𝑛.

5.5 Proof of Transparency
First, we define correspondence between an input message
and a message in the shared buffer. Assume a raw value 𝑣 and
a pre-processed pair 𝑣 ′ = ⟨𝑣𝐿, 𝑣𝐻 ⟩. We say 𝑣≃𝐿𝑣

′ iff 𝑣 = 𝑣𝐿
and 𝑣≃𝐻𝑣

′ iff 𝑣 = 𝑣𝐻 . Next, we define ≃𝐿 between an input
message 𝑎 and a message stored in the shared buffer, 𝑎′. We
say 𝑎≃𝐿𝑎

′ iff ∀𝑘 ∈ 𝑑𝑜𝑚(𝑎) ∪𝑑𝑜𝑚(𝑎′), 𝑎(𝑘)≃𝐿𝑎
′(𝑘) holds. We

can also extend ≃𝐻 in the same way.
Next, we define a replacement function for sensitive en-

tries of an input message. We first define 𝑟𝑒𝑝 (𝑘, 𝑣) as 𝑣𝑑𝑒𝑓 (𝑘)
if 𝑘 ∈ 𝐾𝑆 and 𝑣 if 𝑘 ∈ 𝐾𝑁𝑆 . Then, we can extend this for an
input network message or message list, as we did for 𝑝𝑎𝑖𝑟 ().

From the definition of ≃𝐿 , 𝑟𝑒𝑝 (), and 𝑝𝑎𝑖𝑟 (), we can easily
show that 𝑟𝑒𝑝 (𝑎)≃𝐿𝑝𝑎𝑖𝑟 (𝑎) holds. Likewise, from the defini-
tion of ≃𝐻 and 𝑟𝑒𝑝 (), we can show that 𝑎≃𝐻𝑝𝑎𝑖𝑟 (𝑎) holds.
Additionally, by combining the definition of ≃𝐿 , =𝑁𝑆 , and
𝑒𝑥𝑡 (), we can show that if 𝑎≃𝐿𝑎

′ then 𝑎=𝑁𝑆𝑒𝑥𝑡 (𝑎′) holds.
Similarly, we can show that if 𝑎≃𝐻𝑎

′ then 𝑎=𝑆𝑒𝑥𝑡 (𝑎′) holds.
Lastly, we define =𝑠𝑦𝑠 for 𝑐1 and 𝑐2. First, we say 𝑐1=𝑟𝑐𝑣𝑐2

iff (i) 𝑐1 ≠ recv and 𝑐2 ≠ recv or (ii) 𝑐1 = 𝑐2 = recv. Similarly,
we will say 𝑐1=𝑠𝑛𝑑𝑐2 iff (i) 𝑐1 ≠ send and 𝑐2 ≠ send or (ii) 𝑐1
= 𝑐2 = send. Finally, we say 𝑐1=𝑠𝑦𝑠𝑐2 iff 𝑐1=𝑟𝑐𝑣𝑐2 and 𝑐1=𝑠𝑛𝑑𝑐2.

Now we introduce two lemmas to prove Theorem 2.

Lemma 3 (Correspondence to Low Execution). Assume
a transition step with the standard semantics ⟨𝑐,𝑚, 𝑎1, 𝐼1,
𝑂1⟩ → ⟨𝑐 ′1,𝑚′

1, 𝑎
′
1, 𝐼

′
1,𝑂

′
1⟩ and a global transition stepwith the

PaveBox semantics ⟨⟨𝑐,𝑚⟩, ⟨𝑐𝐻 ,𝑚𝐻 ⟩, 𝑎2, 𝐼2,𝑂2⟩ { ⟨⟨𝑐 ′2,𝑚′
2⟩,

⟨𝑐 ′
𝐻
,𝑚′

𝐻
⟩, 𝑎′2, 𝐼 ′2,𝑂 ′

2⟩. Now, if𝑎1≃𝐿𝑎2, 𝐼1 = 𝑟𝑒𝑝 (𝐼2), and𝑂1=𝑁𝑆𝑂2,
then 𝑐 ′1 = 𝑐

′
2,𝑚

′
1 =𝑚

′
2, 𝑎

′
1≃𝐿𝑎

′
2, 𝐼

′
1 = 𝑟𝑒𝑝 (𝐼 ′2), and 𝑂 ′

1=𝑁𝑆𝑂
′
2.

Lemma 4 (Correspondence to High Execution). Assume
a transition with the standard semantics ⟨𝑐, 𝑚, 𝑎1, 𝐼1,𝑂1⟩ →
⟨𝑐 ′1,𝑚′

1, 𝑎
′
1, 𝐼

′
1,𝑂

′
1⟩ and a global transition with the PaveBox

semantics ⟨⟨𝑐𝐿,𝑚𝐿⟩, ⟨𝑐,𝑚⟩, 𝑎2, 𝐼2,𝑂2⟩ { ⟨⟨𝑐 ′
𝐿
,𝑚′

𝐿
⟩, ⟨𝑐 ′2,𝑚′

2⟩,
𝑎′2, 𝐼

′
2,𝑂

′
2⟩. Now, if 𝑎1≃𝐻𝑎2, 𝐼1=𝑆 𝐼2, 𝑂1=𝑆𝑂2, and 𝑐=𝑠𝑦𝑠𝑐𝐿 , then

𝑐 ′1 = 𝑐
′
2,𝑚

′
1 =𝑚

′
2, 𝑎

′
1≃𝐻𝑎

′
2, 𝐼

′
1=𝑆 𝐼

′
2, and 𝑂

′
1=𝑆𝑂

′
2.

Intuitively, Lemma 3 means that if there is a correspon-
dence between a standard execution and a low execution, it is
maintained after a single step. Lemma 4 describes the preser-
vation of the correspondence between a standard execution
and a high execution.
Proof of Lemma 3. Based on (G2) of Figure 6, we first

split the global transition{ in Lemma 3 into two local transi-
tions: (i) ⟨⟨𝑐,𝑚⟩𝐿, 𝑎2, 𝐼2,𝑂2⟩ ⇒ ⟨⟨𝑐 ′2,𝑚′

2⟩𝐿, 𝑎2, 𝐼
′
2,𝑂

′
2⟩ and (ii)

⟨⟨𝑐𝐻 ,𝑚𝐻 ⟩𝐻 , 𝑎2, 𝐼 ′2,𝑂 ′
2⟩ ⇒ ⟨⟨𝑐 ′

𝐻
,𝑚′

𝐻
⟩
𝐻
, 𝑎′2, 𝐼

′
2,𝑂

′
2⟩. Note that

the second transition is not making any change to 𝐼 ′2 and𝑂
′
2,

as proved in previous Lemma 2.
First, we consider the low execution step (i). We know

that the transition of 𝑐 and𝑚 in the standard execution is
decided by 𝑐 ,𝑚, and 𝑎1. Meanwhile, in the low execution, the

transition of ⟨𝑐,𝑚⟩ is decided by 𝑐 ,𝑚, and the L fields of 𝑎2.
From 𝑎1≃𝐿𝑎2, we can see that 𝑐,𝑚 in the standard execution
and 𝑐,𝑚 in the low execution always change in the same
way. Thus, 𝑐 ′1 = 𝑐

′
2 and𝑚

′
1 =𝑚

′
2 hold.

Next, wewill prove that𝑎′1≃𝐿𝑎2, 𝐼 ′1 = 𝑟𝑒𝑝 (𝐼 ′2), and𝑂 ′
1=𝑁𝑆𝑂

′
2.

If 𝑐 does not affect shared buffer or network messages (i.e.,
𝑎1, 𝑎2, 𝐼1, 𝐼2, 𝑂1, 𝑂2), then these properties are directly sat-
isfied. Thus, we will examine commands that can modify
these message-related components. First, when 𝑐 is add 𝑥

to 𝑘 , the standard execution updates 𝑎1 with 𝑚(𝑥) while
the low execution updates L field of 𝑎2 with 𝑚(𝑥). There-
fore, 𝑎′1≃𝐿𝑎

′
2 holds. Next, let us assume 𝑐 is recv. Recall that

we have shown 𝑟𝑒𝑝 (𝑎)≃𝐿𝑝𝑎𝑖𝑟 (𝑎). With this property and
𝐼1 = 𝑟𝑒𝑝 (𝐼2), we can prove that 𝑎′1≃𝐿𝑎2 from rule (S1) and
(L1). Also, these rules remove the first element in 𝐼1 and 𝐼2 re-
spectively, so 𝐼 ′1 = 𝑟𝑒𝑝 (𝐼 ′2) holds, too. Lastly, when 𝑐 is send,
we will use the fact that if 𝑎≃𝐿𝑎

′ then 𝑎=𝑁𝑆𝑒𝑥𝑡 (𝑎′) holds.
With this property and 𝑎1≃𝐿𝑎2, we can show that 𝑂 ′

1=𝑁𝑆𝑂
′
2

holds from rule (S2) and (L3).
Now, we move on to the high execution step (ii). From

Lemma 2, 𝑎2=𝐿𝑎
′
2 holds. Since we have proven 𝑎

′
1≃𝐿𝑎2=𝐿𝑎

′
2,

we can see that 𝑎′1≃𝐿𝑎
′
2.

Proof of Lemma 4. As we did in the proof of Lemma 3,
we split the transition with global semantics into two local
transitions: (i) ⟨⟨𝑐𝐿,𝑚𝐿⟩𝐿, 𝑎2, 𝐼2,𝑂2⟩ ⇒ ⟨⟨𝑐 ′

𝐿
,𝑚′

𝐿
⟩
𝐿
, 𝑎2, 𝐼

′
2,𝑂

′
2⟩

and (ii) ⟨⟨𝑐,𝑚⟩𝐻 , 𝑎2, 𝐼 ′2,𝑂 ′
2⟩ ⇒ ⟨⟨𝑐 ′2,𝑚′

2⟩𝐻 , 𝑎
′
2, 𝐼

′
2,𝑂

′
2⟩.

We start by proving 𝐼 ′1=𝑆 𝐼
′
2 and𝑂1=𝑆𝑂

′
2. First, wewill prove

𝐼 ′1=𝑆 𝐼
′
2. When 𝑐 is not recv, neither is 𝑐𝐿 , from 𝑐=𝑠𝑦𝑠𝑐𝐿 . Then,

𝐼1 = 𝐼
′
1 and 𝐼2 = 𝐼

′
2, so 𝐼

′
1=𝑆 𝐼

′
2. When 𝑐 is recv, so is 𝑐𝐿 , and the

first element is removed respectively from 𝐼1 and 𝐼2. Since
𝐼1=𝑆 𝐼2, we can see 𝐼 ′1=𝑆 𝐼

′
2. Next, we will prove𝑂1=𝑆𝑂

′
2. When

𝑐 is not send, neither is 𝑐𝐿 , from 𝑐=𝑠𝑦𝑠𝑐𝐿 . Then, 𝑂1 = 𝑂
′
1 and

𝑂2 = 𝑂
′
2, so𝑂

′
1=𝑆𝑂

′
2. When 𝑐 is send, so is 𝑐𝐿 , and we will use

the fact that if 𝑎≃𝐻𝑎
′ then 𝑎=𝑆𝑒𝑥𝑡 (𝑎′). With this property

and 𝑎1≃𝐻𝑎2, we can see 𝑂 ′
1=𝑆𝑂

′
2.

Now, we will prove 𝑐 ′1 = 𝑐
′
2,𝑚

′
1 =𝑚

′
2 and 𝑎

′
1≃𝐻𝑎

′
2. For this,

we should consider 𝑐 = recv case separately. When 𝑐 = recv,
so is 𝑐𝐿 , from 𝑐=𝑠𝑦𝑠𝑐𝐿 . Recall that we have shown 𝑎≃𝐻𝑝𝑎𝑖𝑟 (𝑎).
Using this property, we can examine rule (S1) and (L1) to
conclude that 𝑎′1≃𝐻𝑎2 holds. Besides, from rule (L2), 𝑎2 = 𝑎′2.
From 𝑎′1≃𝐻𝑎2 = 𝑎′2, we can see 𝑎′1≃𝐻𝑎

′
2. Also, 𝑐

′
1 = 𝑐 ′2 and

𝑚′
1 =𝑚

′
2 trivially hold from rule (S1) and (L2).

Next, we consider the case where 𝑐 is not recv. Then, 𝑐𝐿
is not recv as well, so the low execution can only update
the L fields of 𝑎2, and 𝑎2=𝐻𝑎2 holds. From 𝑎1≃𝐻𝑎2=𝐻𝑎2, we
can see 𝑎1≃𝐻𝑎2. Now we can prove 𝑐 ′1 = 𝑐 ′2 and 𝑚

′
1 = 𝑚′

2.
This time, the transition of ⟨𝑐,𝑚⟩ is decided by 𝑐 , 𝑚, and
the H fields of 𝑎2. From 𝑎1≃𝐻𝑎2, we can see that 𝑐,𝑚 in the
standard execution and 𝑐,𝑚 in the high execution always
change in the sameway. Therefore, 𝑐 ′1 = 𝑐

′
2 and𝑚

′
1 =𝑚

′
2 hold.

Lastly, we prove 𝑎′1≃𝐻𝑎
′
2. When 𝑐 is add 𝑥 to 𝑘 , the standard

execution updates 𝑎1 with𝑚(𝑥) while the high execution
updates the H field of 𝑎2 with m(x). Thus, 𝑎′1≃𝐻𝑎

′
2 holds. If
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𝑐 is not add 𝑥 to 𝑘 , 𝑎1 = 𝑎′1 and 𝑎2 = 𝑎′2, so 𝑎
′
1≃𝐻𝑎

′
2 directly

holds from 𝑎1≃𝐻𝑎2.
Proof of Theorem 2. Assume input 𝐼 , non-interferent

program 𝑃 , and the following three executions. First, we
assume an execution with input 𝐼 under the standard seman-
tics ⟨𝑃,𝑚0, 𝑎0, 𝐼 ,𝑂0⟩ →𝑛 ⟨𝑐1,𝑚1, 𝑎1, 𝐼1,𝑂1⟩, Second, we as-
sume another execution under the standard semantics, using
𝑟𝑒𝑝 (𝐼 ) as input: ⟨𝑃,𝑚0, 𝑎0, 𝑟𝑒𝑝 (𝐼 ),𝑂0⟩ →𝑛 ⟨𝑐2,𝑚2, 𝑎2, 𝐼2,𝑂2⟩.
Third, we assume a PaveBox execution with 𝐼 : ⟨𝑆0, 𝑆0, 𝑎0, 𝐼 ,
𝑂0⟩ {𝑛 ⟨⟨𝑐𝐿,𝑚𝐿⟩, ⟨𝑐𝐻 ,𝑚𝐻 ⟩, 𝑎3, 𝐼3,𝑂3⟩.

To prove Theorem 2, we should prove that ∀𝑛 ≥ 0, 𝑂1 =

𝑂3. We can prove this by showing that (i) ∀𝑛 ≥ 0, 𝑂1=𝑁𝑆𝑂3,
and (ii) ∀𝑛 ≥ 0, 𝑂1=𝑆𝑂3.

First, we prove (i) ∀𝑛 ≥ 0, 𝑂1=𝑁𝑆𝑂3. We first use the non-
interference of 𝑃 . Since 𝑃 is non-interferent and 𝑟𝑒𝑝 (𝐼 )=𝑁𝑆 𝐼 ,
we know that∀𝑛 ≥ 0,𝑂1=𝑁𝑆𝑂2 holds fromDefinition 1. Next,
we will prove that 𝑂2=𝑁𝑆𝑂3. For this, we prove that ∀𝑛 ≥ 0,
𝑐2 = 𝑐𝐿 ,𝑚2 =𝑚𝐿 , 𝑎2≃𝐿𝑎3, 𝐼2 = 𝑟𝑒𝑝 (𝐼3), and 𝑂2=𝑁𝑆𝑂3. When
𝑛 = 0, this property trivially holds. Also, if the property holds
for 𝑛 = 𝑘 , we can prove that it also holds for 𝑛 = 𝑘 + 1, using
Lemma 3. Therefore, the property holds ∀𝑛 ≥ 0, by induction
on 𝑛. At this point, we have shown 𝑂1=𝑁𝑆𝑂2=𝑁𝑆𝑂3.
Next, we prove (ii) ∀𝑛 ≥ 0, 𝑂1=𝑆𝑂3. For this, we prove

that ∀𝑛 ≥ 0, 𝑐1 = 𝑐𝐻 ,𝑚1 =𝑚𝐻 , 𝑎1≃𝐻𝑎3, 𝐼1=𝑆 𝐼3, and 𝑂1=𝑆𝑂3.
When 𝑛 = 0, this property trivially holds. Next, we will use
Lemma 4 to show that if the property holds for 𝑛 = 𝑘 , then
it also holds for 𝑛 = 𝑘 + 1. However, we must first show
that ∀𝑛 ≥ 0, 𝑐1=𝑠𝑦𝑠𝑐𝐿 holds. From the non-interference of
𝑃 , we know that ∀𝑛 ≥ 0, 𝑐1=𝑠𝑦𝑠𝑐2, as the length of 𝐼1, 𝐼2,𝑂1
and 𝑂2 can change only by recv and send. Also, during the
proof of 𝑂2=𝑁𝑆𝑂3, we have proved ∀𝑛 ≥ 0, 𝑐2 = 𝑐𝐿 . We now
know that ∀𝑛 ≥ 0, 𝑐1=𝑠𝑦𝑠𝑐𝐿 holds, so we can use Lemma 4
and prove the property with induction on 𝑛.

6 Evaluation
6.1 Experiment Setup
Prototype.We implemented a proof-of-concept of Pave. Our
toolchain supports a module written in C/C++ languages
and libraries for libc and the SP interfaces. We use LLVM for
the instrumentation for SFI and synchronization. Shadow
execution uses approximately twice as many resources as
standard execution. To reduce the redundancy, the PaveBox
delays shadow execution: initially running a single execu-
tion, it starts a new thread for high execution once a message
entry is read. Also, the PaveBox provides a snapshot mecha-
nism [40] that stores its state after initializing a module and
restores the snapshot right after finishing a request.

We implement two different versions of Pave; Pave Single
and Pave Sync. In Pave Single, there is only a low execution
without a high execution. It does not implement the shadow
execution and the synchronization. Therefore, we can mea-
sure the overhead caused solely by Intel SGX and our SFI

mechanism. Pave Sync fully implements the PaveBox in-
cluding the shadow execution with the synchronization. We
also evaluate a version where the synchronization is omit-
ted, which still preserves non-interference as proved in §4.3
and §5. However, it did not show a substantial performance
advantage compared to Pave Sync.

Benchmark. We use six applications for data-processing
scenarios. In (1) file compression service (FileComp) such
as ezyZip and (2) video cropping service (VidEdit) such as
VEED, after a server module receives a file from the user,
it returns the processed file. We used gzip [65] and FFm-
peg [83]. For (3) OpenSSL file encryption service (FileEnc), a
user first sends a key file. The server checks its validity and
returns the validity. Then, the user sends a file and receives
its encrypted file. For (4) GIF frame extractor service (GIFExt)
and (5) audio converter service (AudConv), the server pro-
cesses the user media file and sends the intermediate result
(e.g., the number of GIF frames or the new file size). Then,
the user responds back about which frame number is chosen
or whether to download the new file. The service returns the
corresponding result. We used GIFLIB [35] and FLAC [33] li-
braries. The last scenario is (6) privacy-preserving ad service
(RTB) [23, 39, 84]. We developed a user that sends a set of
user interests (e.g., sports, cars, etc.). Based on the user inter-
ests, ad servers collaborate to deliver the best matching ad.
For this, we build three ad server modules performing real-
time bidding (RTB), one of the well-known ad mechanisms
for programmatic ad auctions. We developed these ad server
modules by extending the RTB algorithms in [99] with the
IPinYou dataset [51]. When the first module receives the set
of user interests, it is propagated to the others. Each of the
other two modules submits a bid back to the first module,
which performs the matching or arithmetic operations to
choose the ad (in a URL form) with the highest bid. The first
module finally delivers the chosen ad to the user.

The scenarios above illustrate the problem that Pave aims
to solve: the trade-off between utilizing online data-processing
services and sacrificing user privacy. The FileComp, VidEdit,
FileEnc, GIFExt, andAudConvmodules each requirememory-
intensive operations compared to the RTB modules. Addi-
tionally, the FileEnc, GIFExt, AudConv, and RTB modules
require multiple round-trip communications in a distributed
network, which was not possible in previous work.
Environments. We measure (i) the computation over-

head to initialize a PaveBox, (ii) the execution time of a
module, and (iii) the user latency. For comparison purposes,
baseline programs are general Linux programs without an
enclave or a PaveBox. Every plot is averaged over ten runs.
All the modules run on a Linux desktop computer equipped
with an Intel Core i9-10900K CPUwith 10 cores and 20 hyper-
threads. The lengths of input messages for FileComp, VidEdit,
FileEnc, GIFExt, AudConv, and RTB are about 50KB, 600KB,
5K, 100K, 100K, and 8KB, respectively. Since an enclave has
no time source, we use the host time source to measure the
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Table 2. The execution time (ET) and the page fault number
(PF) of each module for our scenarios. The unit of ET is ms.

FileComp VidEdit FileEnc GIFExt
ET PF ET PF ET PF ET PF

Baseline 65 383 239 2,906 47 312 78 1,093
Pave Single 187 36,108 286 47,939 75 37,002 90 35,364
Pave Sync 272 45,120 509 79,422 157 45,265 189 46,389

AudConv RTB
Module 1 Module 2 Module 3

ET PF ET PF ET PF ET PF
Baseline 69 778 235 415 44 289 44 283

Pave Single 123 35,602 298 34,817 48 34,891 45 34,857
Pave Sync 191 44,076 409 43,143 106 43,292 102 43,270

performance. In contrast to the baseline, the measurement
of a PaveBox includes an additional overhead.

6.2 PaveBox Initialization Overhead
To evaluate the computation overhead to initialize and load
a PaveBox, we measure the time to run a simple program
in C ‘int main{return 0;}.’ Specifically, we measure (i) the
time to create and load an enclave memory, (ii) the time to
initialize the PaveBox after entering the enclave, and (iii)
the time to run the test program and terminate the enclave.
It takes 1,431 ms to create and load an enclave memory. Ini-
tializing the PaveBox including the loading process of the
encrypted module takes 1,839 ms. This includes SFI valida-
tion time in §4.1 (30 ms), synchronization validation time
(330 ms), and remote attestation overhead (1,454 ms). The
time for running the test program is 2 ms. The total time
from creating the enclave to exiting from the enclave is 3,272
ms. Note that, by using the snapshot technique, the initial-
ization overhead ((i) and (ii)) incurs only once when the host
starts the module. The snapshot overhead is 3.7 ms, which
is more efficient than the initialization.

6.3 Execution Time
Table 2 shows the execution time to run a module. The execu-
tion time is measured from the moment the module accepts a
user request until the termination of the module. Compared
to the baseline, the execution time for Pave Single increased
by 187.6% for FileComp, 19.6% for VidEdit, 57.9% for FileEnc,
15.1% for GIFExt, and 79.2% for AudConv. For these scenar-
ios, the shadow execution and synchronization (i.e., in Pave
Sync) incur 45.5% for FileComp, 77.6% for VidEdit, 109.5%
for FileEnc, 110.8% for GIFExt, and 55.0% for AudConv. Pave
Single increases the execution time mainly due to the SGX
overhead to access the enclave memory and the code over-
head of the SFI-compliant binary. The overhead of Pave
Sync primarily stems from the shadow execution and syn-
chronization. Since both executions share the enclave EPC
memory area, this increases memory access overhead. Ad-
ditionally, the number of executed basic blocks contributes
to the amount of instrumented code to be executed. For
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Figure 7. The user latency to receive a processed result.

the three RTB modules, the execution time increases as the
Pave implementation becomes a full stack; 12.9% (i.e., Pave
Single compared to the baseline) and 94.1% (i.e., Pave Sync
compared to Pave Single).

We plot the number of page faults to show that the paging
overhead due to the limited EPC size (128 MB) for the entire
execution may influence the overhead of Pave. It also im-
plies that VidEdit, FileEnc, GIFExt, AudConv, and FileComp
perform memory-intensive operations and hence incur more
overhead, compared to RTB scenarios. Even though three
RTB modules share the limited ECP, the numbers are similar.

We further analyze the impact of the EPC size on memory
access overhead. We allocate data of 32 MB, 48 MB, 64 MB,
80 MB, 96 MB, 112 MB, 128 MB, and sequentially access each
page from start to end by selecting a random address within
each page. The total time to access all pages is measured.
Using the 32 MB access time as a baseline, the observed
overheads are 53%, 106%, 154%, 420%, 1236%, and 2218%,
respectively. These results indicate a non-linear increase in
overhead when data size reaches 96 MB, likely due to the
EPC limit of 128 MB EPC, with only 93 MB available to user
applications. As processors with larger EPC sizes (512 MB–1
TB [42]) become more common, it can be further mitigated.

6.4 User Latency
The user latency refers to the time between the moment of
sending user data and that of receiving its result as shown in
Figure 7. The user latency also increases from the baseline to
Pave Sync. Compared to the baseline, the user latencies are
increased by 100.1% for FileComp, 8.4% for VidEdit, 37.4%
for FileEnc, 4.8% for GIFExt, 38.1% for AudConv, and 25.8%
for RTB. Compared to Pave Single, the shadow execution
and synchronization (i.e., in Pave Sync) incurs 28∼61% more
latencies; FileComp (31.2%), VidEdit (61.2%), FileEnc (53.4%),
GIFExt (60.2%), AudConv (32.3%), and RTB (28.9%). Similar to
the results of the execution time, the memory-intensive tasks
affect the latency. These overheads show that the user may
experience delays depending on online service scenarios.
Similarly, it can be reduced with a larger EPC memory.
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Table 3. Features of Pave that mitigate a side-channel attack.

Attack Vector MP DH OI IL CA SFI ETM1

[98] Page table ✔ ✔ ✔
[90] Page table ✔ ✔
[55] L1 cache ✔ ✔ ✔

[15, 36] L1 cache ✔ ✔ ✔
[41, 50] Branch Prediction Unit ✔ ✔ ✔
[31] Branch Prediction Unit ✔ ✔ ✔ ✔

[63, 95] Cache, DRAM ✔ ✔
[76] Cache, DRAM ✔ ✔ ✔
[49] Memory safety ✔ ✔ ✔

[52, 86]2 Speculative Execution ✔ ✔
[20, 46, 48, 75]2 Speculative Execution ✔
[74, 87, 91, 92]2 Microarchitectural buffers ✔

[68] Microarchitectural buffers ✔ ✔ ✔
[56] # of instructions ✔ ✔ ✔
[89] Interrupt latency ✔ ✔ ✔
[4] Execution port ✔ ✔ ✔

[43, 57] Voltage interface ✔ ✔ ✔
[5] Floating point operations ✔ ✔ ✔
[66] CPU Frontend ✔ ✔ ✔ ✔ ✔
[13]2 APIC ✔

1 It is based on the cases when there are direct performance references in the paper or
when the victim state is measured after every instruction.

2 These studies demonstrate how to steal seal keys or attestation keys from the Intel
SGX architecture. Thus, we do not evaluate the impacts of OI, IL, CA, SFI, and ETM.

7 Discussions
Side-Channel Attacks (SCAs). Table 3 shows whether
Pave can mitigate SCAs by the cloud provider using the
following features:

• Microcode patch (MP): A user can verify that the mi-
crocode version is kept up-to-date.

• Disabling Hyperthreading (DH): It prevents an attacker
from compromising resources on the same core.

• One-time input (OI): Some attacks need to run the victim
program multiple times with the same input. In Pave, the
user request is processed only once and the cloud provider
cannot replay a user request due to the TLS-based session.

• In-enclave loading (IL): Some attacks require analyzing a
victim program (i.e., binary or source code) to exploit its
control flow depending on secret data or to reveal in-flight
data. However, Pave encrypts the module binary.

• Code Auditing (CA): Pave is intended to be open-sourced
allowing the user to verify its security or implementation.
This enables the community to manually harden the code.

• Software Fault Isolation (SFI)
• Execution Time Monitoring (ETM): Some attacks signif-
icantly increase the runtime overhead, which can be de-
tected by the user or the service provider.

We believe the benefits of the SCAs are marginal. First, it
is not in the interest of cloud providers to allow insider at-
tacks, as such actions would undermine their reputation
and credibility. Moreover, predicting which module will
process a specific user request is challenging, making tar-
geted attacks on individual users impractical. Finally, on-
going development of countermeasures diminishes the im-
pact [1, 21, 22, 24, 38, 61, 62, 80–82].

Spectre Attacks. In §4, we demonstrate each execution
is isolated by our SFI mechanism. However, it can be by-
passed by Spectre attacks. Spectre attacks exploit specula-
tive execution to manipulate the microarchitectural state by
leveraging mispredictions in various prediction units (e.g.,
Pattern History Table; PHT). These attacks are typically
categorized into four types based on their root cause [16]:
Spectre-PHT, Spectre-BTB, Spectre-RSB, and Spectre-STL.
Except for Spectre-STL, the other types have been shown
to be feasible even when both an attacker (i.e., low execu-
tion) and a victim (i.e., high execution) are sandboxed within
the same address space [16]. The attacker can influence the
victim’s control flow by manipulating the PHT (Spectre-
PHT [46]), Branch Target Buffer (Spectre-BTB [46]), or Re-
turn Stack Buffer (Spectre-RSB [53]), redirecting execution
to an intended destination.
Although Pave cannot entirely thwart Spectre attacks,

our SFI rules mitigate their effects. First, because the (SFI-
enforced) attacker cannot jump into the middle of a code
bundle (Rules N1 and N2), it also cannot train the BTB to steer
the victim’s execution to an arbitrary location within the
bundle. Consequently, with the absence of the ret instruction
(Rule N3), return-oriented programming (ROP)-based control
hijacking, which is exploited in Spectre-BTB and Spectre-
RSB attacks, can be mitigated. Second, as no instruction is
allowed to access data outside its designated region (Rules
E1–E5), leak gadgets that extract out-of-bounds data cannot
exist in the module at the first place. Therefore, Spectre-PHT,
which relies on such gadgets, is mitigated.
Developer Efforts. Recall that Pave preserves the function-
ality of a program only when it is already non-interferent
without Pave. Thus, the service provider is responsible for de-
veloping software modules that satisfy the non-interference.
Such burden of developers can be alleviated in several ways.
First, a module can adopt well-studied algorithms that pre-
vent data leakages through a timing channel (e.g., [77]). Next,
the developer can use some tools that analyze whether amod-
ule is non-interferent [60], or other tools that automatically
re-write a given module [69, 97] to satisfy non-interference.
Lastly, the software interfaces of Pave can be narrowed by
integrating the SGX enclave with system features such as
LibOS [85] and oblivious file system [3]. Such integration
reduces the number of syscalls that the developer should
consider (e.g., ioctl).
Formal Model vs. Implementation. The key difference
between the formal model (§5) and implementation (§4) is
the notion of time unit. In the formal model, the minimal
time unit was one local transition step defined in Figure 5.
For Definition 1 to be meaningful, all the local transition
steps must take the same amount of time, or their difference
must be negligible. Meanwhile, in the implementation, our
minimal time unit is execution of a basic block. Therefore,
the non-interference of Pave relies on the assumption that
the execution time of basic blocks are indistinguishable from
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one another. To strengthen this assumption, Pave toolchain
may split a large or possibly time-consuming basic block
into smaller blocks, which we leave as a future work.
Transparency under OS Scheduler. As discussed in §4.3,
PaveBox relies on synchronization instructions to make
the low and high executions keep pace with each other. If
PaveBox fails to validate proper instrumentation of basic
blocks during the initialization step (§4.4), it falls back on the
OS scheduler. In this case, the transparency of the system
cannot be guaranteed and the functionality of the program
may not be preserved.

8 Related Work
Thoth [30] and Flowfence [32] provides user-defined poli-
cies to prevent data leaks by buggy server programs. Thoth
uses a kernel monitor for I/O tracking, while FlowFence
employs an Opacified Computation Model to restrict data
movement from IoT devices. VC3 [73], inlinemonitoring [10],
Riverbed [93], Mitigator [54], and HasTee [70] use trusted
hardware to control user data. VC3 proposes a MapReduce
framework to enhance the code and data security by us-
ing Intel SGX. Inline monitoring uses Intel SGX to check
whether a binary complies with the policy described using
Avenance [11]. In Mitigator, a verifier checks the compliance
of the source code with a privacy policy using static analy-
sis, and produces a signature. Riverbed uses TEE with taint
tracking. HasTee [70] proposes a TEE-abstracted type sys-
tem that partitions a program to isolate sensitive code and
data while enforcing security policies. Ryoan [40] is the first
work to address implicit IFC in the context of an untrusted
server. While it supports request-oriented applications more
efficiently, our system accepts wider range of applications.

SME [17, 27] was generalized as a scheduling approach and
its security properties were analyzed from the perspective
of timing- and termination-sensitivity. Also, declassification
schemes were proposed [12, 67]. Rafnsson and Sabelfeld [67]
use the concept of an observable channel to declassification.
Multiple Facets (MF) [6, 8, 58, 72] simulate the result of the
SME without multiple executions. While our presentation
in §4.2 resembles that of MF, our shadow proxy uses it for a
different purpose, which is allowing the two executions to
share the message in a securely controlled fashion. Finally,
SME has been adapted for various applications including
Web APIs [25, 26], Unix-like systems [64], and Android [18]

9 Conclusion
This paper presents Pave, an IFC framework to accomplish
privacy-preserving online data-processing services. Even if
a module is developed by a potentially malicious service
provider, Pave can assure a user that the user’s data would
be protected. The shadow execution, the shadow proxy, and
the synchronization are the key design elements to achieve
the timing-sensitive non-interference and the functionality

preservation at the same time. Our implementation enforces
the IFC rules bymulti-domain address masking.We carry out
prototype-based experiments to demonstrate the feasibility
of Pave.
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